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0.1. Algebra of polynomials.
Question. What is a polynomial? In schools we are taught that a polynomial is a

function of the form

p(x) = anx
n + an−1x

n−1 · · ·+ a1x + a0, (1)

where ai are real numbers. In particular we can draw the graph of a polynomial, compute
values of a polynomial, find derivatives, etc. In contrast to that, in this notes we will
adopt a purely algebraic point of view.

Definition:. A ring of polynomials is just the set of objects of the form (1), which can
be added and multiplied.

We can think of polynomials as of a kind of a game. We have pieces called 1, x, x2, x3, . . . .
Let us take 3 pieces “x3”, 5 pieces “1” and half of the piece x. So, we have a “polynomial”
x3 + 0.5x + 5.

Remark: We should not worry to much about polynomials like πx −
√

3. Minus just
means that we give out some pieces instead of taking and there is nothing wrong with
taking π fraction of “x”, after all it is just a little more than 3.14 x and a little less than
3.15 x.

Now, we can add polynomials in the usual way: take polynomials p1 and p2 and form
the polynomial p1 + p2 just putting all the pieces together. For example, if we had the
polynomials x3 + 0.5x + 5 and 2x2 + 3x + 1, the result of addition as you may expect
would be x3 + 2x2 + 2.5x + 6.

A more sophisticated operation allowed in our game is multiplication. It works as
follows. First let us explain what multiplication by a number means. To multiply a
polynomial x3 +0.5x+5 by, say, 4 means take 4 copies of it and put everything together,
so 4× (x3 + 0.5x + 5) = 4x3 + 2x + 20. Note that, in particular, the multiplication by 1
does nothing to a polynomial.

Next, what is multiplication by xk? It is just an operation of trading: we say we
multiply by xk and we just trade all pieces of type “xn” to pieces “xn+k”. We get
xk × (x3 + 0.5x + 5) = xk+3 + 0.5xk+1 + 5xk.

Finally, if we want to multiply by polynomial which consists of several terms (pieces)
we multiply by each piece separatly and add the results. Here is an example:

(x + a)× (x− a) = x× (x− a) + a× (x− a) = (x2 − ax) + (ax− a2) = x2 − a2.

Thus we obtain our usual operations of addition and multiplicaton.

Remark: So far it looks that we did not discover much. However, we will see that such
a point of view can lead to some interesting mathematics.

Sets of objects where we have two operations: addition and multiplication with prop-
erties similar to the ones we described are called rings (in some cases a ring is also called
an algebra, in fact we do have an algebra).

The set of pieces {1, x, x2, x3, . . . } is called a basis of our ring.
Notice multiplying x to itself many times, we generate all the “pieces” xk. This is why

x is called a generator of our ring.
1
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Notice also that our multiplication is commutative, it does not matter in what order
we multiply: p1(x)p2(x) = p2(x)p1(x). Later we will deal with noncommutative rings
where this is no longer true.

Let us use a similar approach to differention.

Definition: A differentiation d = d
dx

is another operation which given a polynomial p
produces another polynomial dp. This operation has the properites:

d(a1p1(x) + a2p2(x)) = a1dp1(x) + a2dp2(x), (2)

called linearity (or the sum rule),

d(p1(x)p2(x)) = (dp1(x))p2(x) + p1(x)(dp2(x)), (3)

called Leibnitz rule (the product rule) and dx = 1. Here pi(x) are polynomials and ai

are real numbers.

Lemma 1. We have da = 0, for any real number a, also dxn = nxn−1. More generally,
for k 6 n, we have

dk(axn) = n(n− 1) . . . (n− k + 1)axn−k = a
n!

k!
xn−k,

and dkxn = 0 if k > n.

Proof : Let us compute the derivative of x2.

d(x2) = d(xx) = (dx)x + xdx = x + x = 2x.

Exercise: Finish the proof of the lemma.
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Now we have two different operations: multiplication by x and differentiation d. What
if we apply them in different orders?

Lemma 2. dx − xd = 1. In other words, for any polynomial p(x), we have d(xp(x)) −
xd(p(x)) = p(x).

Exercise: Prove the lemma.

0.2. Exponentials. Recall that the number e is defined by the following sum:

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ . . . .

Exercise: Prove that e is irrational.

Definition: We define an object called ex by

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . . .

This is an example of an object called a power series. “Power” because it is made of
powers of x and “series” for obvious reasons. For us, a power series is not much different
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from a polynomial - we just have infinetely many terms (pieces) at the same time. We
still can multiply and add power series according to the same rules.

Exercise: Check that (1− x)(1 + x + x2 + x3 + . . . ) = 1, so we can write

1

1− x
= 1 + x + x2 + x3 + x4 + . . . . (4)

Exercise: Prove that dex = ex.

Consider now the ring of polynomials in two variables x and y. These are objects of
the type ∑

k,l

aklx
kyl,

which again form a ring (that is we can multiply and add such expressions). Note that
we assumed xy = yx. It means that we write our variables in any order we like (we wrote
y on the right to x). Here is an example: 2− 3x + 4.2y2x3.

Exercise: Work out the addition, the multiplication, the differentiations with repect to
x and y.

The main property of the exponential function is

Lemma 3. ex+y = exey.

Proof : Just multiply everything out and use the Newton binomial formula:

(x + y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 +

(
n

3

)
xn−3y3 + · · ·+

(
n

n

)
yn, (5)

where the bynomial coefficients are(
n

k

)
=

n!

k!(n− k)!
.

Exercise: Work out the details.
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Our next goal is to compute ed. Namely, if p(x) is a polynomial, what would be edp(x)?

Lemma 4. We have edp(x) = p(x + 1) and, more general, for any number h, we have

ehdp(x) = p(x + h).

Proof : It is enough to consider the case p(x) = xn (why?). We have

ehdxn = (1 + hd +
h2d2

2!
+

h3d3

3!
+

h4d4

4!
+ . . . )xn =

xn + nhxn−1 +
n(n− 1)

2
h2xn−2 +

n(n− 1)(n− 2)

3!
h3xn−3 + · · ·+ hn = (x + h)n,

by the binomial formula. (Note that we have only finetely many non-zero terms.) 2
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Remark: In calculus, the formula ehdp(x) = p(x + h) is called the Taylor expansion
formula. It is an important formula, and it includes many others as special cases. For
example, if p(x) is a polynomial then as we saw this is just the Newton binomial formula.

If p(x) = 1/(1−x) then the Taylor expansion formula (where x is set to zero) becomes
(4) (with x replaced by h) - just the formula for the geometric progression.

Note that in calculus, the Taylor expansion formula does not necessarily hold for all
values of x. But in algebraic formal sense it always true.

Exercise: a) For what values of x is the formula (4) true?
b) Let f(x) = 0 for x 6 0 and f(x) = e−1/x for x > 0. Use calculus to show that

(ehdf)(x)|x→0 = 0 for all h.

Now let us consider two operation: ex and ehd.

Lemma 5. ehdex = qexehd , where q = eh. It means that for any polynomial (even power
series) p(x) we have ehdexp(x) = qexehdp(x)..

Proof :

ehdexp(x) = ex+hp(x + h) = ehexp(x + h) = qexehdp(x).

2

Exercise: Let A and B are two letters such that AB−BA = h. Prove that eAeB = qeBeA

by multiplying the corresponding series and moving all A’s to the right and all B’s to
the left.

Remark: Our notations are not completely random - h is the standard notation for the
Plank constant, and q is traditionally related to the word quantum.

0.3. Gaussian q-numbers. What we do next was known already to Gauss but the deep
meaning of these games became clear much later after invention of quantum mechanics
and related objects. In fact we really study “a free quantum particle on a line”.

Question. What are binomial coefficients?
One possible answer to this question is the following. The binomial coefficients are

coefficients in the Newton binomial formula. That is we take to letters x, y, and expand
powers of the sum x + y assuming (usually silently!) that xy = yx then we find numbers
which are called binomial coefficients. Note also that the first binomial coefficient

(
n
1

)
is

actually number n itself.
Consider the ring of polynomials in variables X, Y such that Y X = qXY for some

real number q. These polynomials are again objects of the type∑
k,l

cklX
kY l,

where ck,l are some numbers and we add them as usual. However the multiplication
changes. Let us consider some examples:

(XY 2+Y )(X+XY ) = XY 2X+XY 2XY +Y X+Y XY = q2X2Y 2+q2X2Y 3+qXY +qXY 2,

(X + Y )(X − Y ) = X2 − Y 2 + (q − 1)XY.
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Note that if we set q = 1 then we get back to good old (classical) multiplication, where
(x− y)(x + y) = x2 − y2.

Definition: The q-binomial coefficients
(

n
k

)
q

are coefficients in the expansion of powers

of (X + Y )n,

(X + Y )n = Xn +

(
n

1

)
q

Xn−1Y +

(
n

2

)
q

Xn−2Y 2 +

(
n

3

)
q

Xn−3Y 3 + · · ·+
(

n

n

)
q

Y n.

and the quantum number [n]q is the first q-binomial coefficient [n]q =
(

n
1

)
q
.

First we derive the q-analogs of the Pascal identities.

Lemma 6. (
n

k

)
=

(
n− 1

k

)
+ qn−k

(
n− 1

k − 1

)
,

(
n

k

)
= qk

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Proof : Multiply (X + Y )n−1 by (X + Y ) from the left. Then the term Xn−kY k in the
result is obtained multiplying the term Xn−k−1Y k in (X+Y )n−1 by X and by multiplying
the term Xn−kY k−1 in (X+Y )n−1 by Y . Note that in the second case we have to swing Y
to the right through Xn−k which will give a factor qn−k. Now we obtain the first equality
by comparing the coefficients in front of Xn−kY k.

The second equality is proved similarly multiplying (X + Y )n−1 by (X + Y ) from the
right. 2

Now we are ready to compute the q-binomial coefficients explicitly.

Lemma 7. The q-binomial coefficients are polynomilas in q with nonnegative integer
coefficients, which are equal to usual binomial coefficients when q = 1. Explicitly we have

[n]q = 1 + q + q2 + . . . qn−1 =
1− qn

1− q
,

(
n

k

)
q

=
[n]!q

[k]!q[n− k]!q
=

(1− qn)(1− qn−1) . . . (1− qn−k+1)

(1− q)(1− q2) . . . (1− qk)
,

where [n]!q = [1]q[2]q . . . [n]q.

Proof : Induction on n.

Exercise: Fill out the details.

2

Many identities with bynomial coefficients can be “deformed” (“quantized”) to the
identities for the q-binomial coefficients. The Pascal identity is one example.

Another example is the Chu-Wandermond identity.
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Exercise: Prove that (
m + n

k

)
q

=
k∑

i=0

q(m−i)(n−i)

(
m

i

)
q

(
n

k − i

)
q

.

0.4. The case ql = 1. Let ql = 1 and qs 6= 1 for s = 1, . . . , l − 1. Then we have
[n]q = [n + l]q. And there are only l different quantum numbers, in particular [l]q = 0.
Note that the quantum numbers are still polynomials in q. The only difference is that
we can now reduce high powers of q to the smaller ones using the relation ql = 1.

The situation is somewhat similar to the reduction of all integers to reminders modulo
l. In fact this similarity is very deep. Here we show some examples.

Exercise: Let l be a prime number. Let m1, m2, be natural numbers. Devide m1, m2 by
l with a reminder: m1 = k1l + r1, m2 = k2l + r2, where 0 6 r1, r2 < l. Prove that

(x + y)l = xl + yl (mod l),(
m2

m1

)
=

(
k2

k1

)(
r2

r1

)
(mod l).

We have the following q-analog of this identities.

Exercise: Let ql = 1 and qs 6= 1 for s = 1, . . . , l − 1. Let m1, m2, be natural numbers.
Devide m1, m2 by l with a reminder: m1 = k1l + r1, m2 = k2l + r2, where 0 6 r1, r2 < l.
Prove that (we recall the relations Y X = qXY ).

(X + Y )l = X l + Y l,(
m2

m1

)
q

=

(
k2

k1

)(
r2

r1

)
q

.

0.5. q-exponent and q-differentiation. Many objects have their quantum versions.
We describe here the q-versions of the exponential function and the differentiation.

Recall that the usual derivative d is a linear map such that dxk = kxk−1. As before,
linear means that we differentiate term by term, see (2) above.

Definition: Define q-derivative Dq of as a linear map such that DqX
k = [k]qX

k−1.

Remark: As always at q = 1 we recover the classical definition of the derivative.

It turnes out that there is a property similar to the Leibnitz rule (3).

Lemma 8.

Dq(p1(X)p2(X)) = (Dqf(X))g(X)+f(qX)(Dqg(X)) = (Dqf(X))g(qX)+f(X)(Dqg(X)).

Exercise: Proof the lemma.

The calculus type definition of the usual derivative involves taking a certain limit: one
has to consider infinetly small changes of the variable. A nice thing is that in the q-case
this definition becomes easy.

Lemma 9.

Dqp(X) =
p(X)− p(qX)

X − qX
.
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Exercise: Proof the lemma and observe what happens in the limit q → 1.

In the same spirit, let us define the q-exponential.

Definition: The q-exponential Eq(X) is defined by the formula

Eq(X) = 1 + X +
X2

[2]!q
+

X3

[3]!q
+ . . .

Exercise: Prove that DqEq(X) = Eq(X).

Exercise: Let Y X = qXY . Prove that Eq(X +Y ) = Eq(X)Eq(Y ). Note that we cannot
switch factors in the RHS.

Exercise: Let Y X = qXY . Prove the q-version of the Taylor expansion formula:

p(X + Y ) = Eq(XDY
q )p(Y ),

where DY
q is the q-differention with respect to Y variable.

0.6. More Exercises.

1. Prove the chain rule formula: d(p1(p2(x))) = dp1(p2(x)) dp2(x).

2. Use calculus show that

(ehd sin(x))|x→0 = h− h3

3!
+

h5

5!
− h7

7!
+ . . . , (6)

(ehd cos(x))|x→0 = 1− h2

2!
+

h4

4!
− h6

6!
+ . . . . (7)

3. Denote sin(h) and cos(h) to be the right hand side power series in (6) and (7)
respectively. Show that sin2(h) + cos2(h) = 1. Show that dsin(x) = cos(x), dcos(x) =
−sin(x). Let i be a symbol, such that i2 = −1. Show that eih = cos(h) + i sin(h).

4. Prove the formula
n−1∏
k=0

(1 + xqk) =
n∑

k=0

q
k(k−1)

2

(
n

k

)
q

xk.

5. Consider the area A under the graph of xk on the segment [0, 1]. Let us chose q < 1
and divide [0, 1] in infintely many segments [qn+1, qn], n = 0, 1, 2, . . . . Then our area A
can be approximated by the sum s(q):

A ' s(q) :=
∞∑

n=0

(qn − qn+1)qnk =
1− q

1− qk+1
=

1

[k + 1]q
.

Prove that A = limq→1 s(q).

6. Prove that
n∑

k=0

(−1)k

(
n

k

)
q

= (1− q)(1− q2) . . . (1− qn−1),

if n is even and 0 if n is odd.
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7. Prove that DqX − qXDq = 1.


