ELLIPTIC CURVES

BJORN POONEN

1. INTRODUCTION

The theme of this lecture is to show how geometry can be used to understand the rational
number solutions to a polynomial equation. We will illustrate this first in the context of
rational points on the circle, and then in the more advanced context of rational points on
elliptic curves.

2. PLANE CURVES

A plane curve is the set of the form {(z,y) : f(z,y) = 0} where f(z,y) is a polynomial
in two variables!. There are many familiar examples of plane curves: for example, the circle
(r—3)*+(y—2)? = 4 is a plane curve, as one sees by taking f(z,y) to be (x—3)?+(y—2)*>—4.

The degree of the curve is the total degree of f; this is defined as the maximum of 7 + j
such that there is a monomial az’y’ occurring in f with a # 0. For example, the plane curve

2* —102%y* + 9y* +20 =0

has degree 4 because of the monomial of largest degree in it is —10z%y?, which has degree
2+2=4.

3. PLANE CURVES OF LOW DEGREE

Plane curves of degree 1 are called lines. They are defined by equations of the form
ax + by + ¢ = 0, where a, b are not both zero.

Plane curves of degree 2 are called conic sections or simply conics®. These have the form
ax?®+ bxy + cy?* +dx + ey + f = 0 for some numbers a, b, ¢, d, e, f. The conics include ellipses
(including the special case of circles), parabolas, hyperbolas, as well as some “degenerate”
cases such as ry = 0 (two lines), 22 — 1 = 0, or 22 = 0. (Many people would exclude some
or all of the last three examples from the definition of a conic.)

Plane curves of degree 3 are called cubic curves. The general form of such a curve is

ala:?’ + a2x2y + aga:yz + a4y3 + a53:2 + agxry + a7y2 + agx + agy + a9 = 0,

where ay,...,a;9 are numbers. Elliptic curves are certain cubic curves; namely they are the
curves defined by equations of the form
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IThere are a couple of subtleties here. Usually we will insist that f(z,y) be non-constant, since if f(z,y) is
a constant, then the set of solutions to f(x,y) = 0 is either empty or the entire plane, depending on whether
the constant is nonzero or zero. Also, although we will usually draw the set of solutions to f(x,y) = 0 where
x and y are real numbers, the theory actually works better when one allows complex number solutions as
well. For example, the “curve” 22 + y2 + 1 = 0 looks empty if one only takes real number solutions, but
acquires many solutions if z and y are permitted to be complex numbers.

2This is because they arise by slicing a double cone in space such as 22 + y? = 22 with a plane.
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or equivalently
y* = flx) =0,
where f(z) is a squarefree polynomial of degree 3. “Squarefree” means that f(x) has no
multiple roots. For instance
y =13 — 3z 42
does not define an elliptic curve, because

? =3 +2=(z—-1)>*x+2)

3 is not an elliptic curve, but y?> = 2® + 1 is an

has 1 as a multiple root. Similarly y?> = z
elliptic curve.

By scaling the coordinates and translating, one can convert any elliptic curve into one of
the form y? = 2® + Az + B where A and B are numbers. It turns out that a general curve
of the form y? = x® + Az + B is an elliptic curve (i.e., 2* + Az + B is squarefree) if and only
if —(4A3 +27B?%) = 0. (See the problems at the end.) From now on, we will always assume
that our elliptic curves are defined over Q; this means that the coefficients of the polynomial

defining an elliptic curve are rational numbers.

4. RATIONAL POINTS ON THE UNIT CIRCLE

A rational point on a plane curve is a point on the curve with rational coordinates. For
example, (3/5,4/5) is a rational point on the circle C' with equation z? 4 y* = 1.

As one can guess from the example just given, rational points on C are closely related to
Pythagorean triples, i.e., the positive integer solutions to a? 4+ b*> = 2. In fact, if a, b, c are
any integers satisfying a? + b* = ¢ and ¢ # 0, then (a/c,b/c) will be a rational point on C.

Conversely, if (z,y) is a rational point on C. then by choosing a common denominator
for z and y one can write z = a/c and y = b/c for some integers a, b, ¢ with ¢ # 0, and the
relation 22 + y? = 1 implies a? + b*> = ¢2. If moreover x and y are nonzero, then a, b, ¢ will
all be nonzero, and (Jal, |b], |c|) will be a Pythagorean triple.

It would be nice to have a description of all the rational points on C, because then we
would have a description of all the Pythagorean triples. Our goal now is to find such a
description using geometry!

Consider the following construction. Start with the rational point P = (—1,0) on C. Fix
a rational number t. Draw the line L; with slope ¢ passing through P. This line will intersect
the circle at a second point @; (which depends on the number ).

By “pure thought” (no calculation), one can see that (); must have rational coordinates,
because its x-coordinate will arise as the solution to a quadratic equation which already has
one rational root, namely the x-coordinate of P, and then the y-coordinate of (), also will be
rational (either by the same argument with y-coordinates, or by using the equation of L;).

For the incredulous, here is a full calculation of @;. The equation of L; (in point-slope
form) is y = t(z +1). To intersect this with C', which is 22 + y* = 1, substitute y = t(z + 1)
to obtain

2?4+t (r+1)2 =1
(22— 1)+t (x+1)*=0
(z+1)[(z—1)+(x+1)] =0.
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It was not just luck that the quadratic polynomial in x factored: the point is that it had to
have  + 1 as a factor, because we already knew that there was a point with z-coordinate
—1 in the intersection L; N C, namely P = (—1,0). Anyway, discarding the root x = —1 and
solving for the other possible z-coordinate, we see that @; has z-coordinate (1 —2)/(1+t?),
and y-coordinate

14 ¢2 2 -1

11—t 2t
Q= <1+t2’t2—1)’

Since t is rational, ); has rational coordinates.

1—¢? 2t
y:t(q;—i—l):t[——i-l} =

SO

We now claim that every rational point on the circle C' other than P = (—1,0) arises as
@, for exactly one rational number t. In other words, we obtain a parameterization of all
the rational points on C' (except P). Recall that Q denotes the set of all rational numbers.

Theorem 1. The map
Q — {rational points on z* + y* = 1 other than (—1,0)}
1—¢* 2t
t = —, 5
— @ <1+t2’t2—1)
is a bijection (one-to-one correspondence).

Proof. There is a natural candidate for the inverse map, namely, the map

{rational points on z* + y* = 1 other than (—1,0)} — Q
s

r+1

(r;s) —

%ding a rational point @ = (r, s) on x? 4+ y* = 1 other than (—1,0) to the slope of the line

To show that the two maps are indeed inverse bijections, it suffices to show that the
composition of the two maps in either order is the identity map.

Given t € Q, if we construct @)y, and then take the slope of the line m, we get t back,
by definition of Q).

On the other hand, if we start with a rational point () # P on C', compute the slope ¢ of
the line L = w, and then construct @, then Q; = ) because () is the intersection point
other than P of C with the line L through P with slope t. This completes the proof. O

If m and n are positive integers with m > n, and we take ¢ = n/m, then we obtain the

point
0, = m?—n?> 2mn
P \m2aen2m2en2 )

2

so (m? — n? 2mn, m? + n?) is a Pythagorean triple.
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5. ELLIPTIC CURVES AND BEZOUT’S THEOREM

In the previous section we parameterized the rational points on the circle 22 4 y? = 1 by
choosing one rational point P, and then looking at the intersection of the circle with lines
through P having rational slope.

Rational points on elliptic curves cannot be parameterized in the same way. What goes
wrong if we try to repeat the procedure that worked for the circle? To fix ideas, let us see
what happens for the elliptic curve E with equation

y? = z(x +5)(z — 5).

(The polynomial x(z + 5)(z — 5) has distinct roots, so this is an elliptic curve.) The point
S = (—4,6) is on the curve E. What happens if we intersect E with the line L of slope 1
through 57

The equation of L is y —6 = 1(x +4), i.e., y = x + 10. Substituting this into the equation
of FE yields

(x +10)* = 2(z +5)(z — 5)
0 =2 — 2% — 45z — 100
0= (z +4)(2* — bz — 25).

The linear factor x + 4 was expected; it reflects the fact that the point S = (—4,6) is one
of the intersection points. But this time the leftover factor is quadratic, not linear, so there
is no reason to expect the other solutions to be rational. In fact, here they are not, because
the discriminant of 2% — 5z — 25 is (—5)% — 4(1)(—25) = 125, which is not the square of a
rational number. Hence we do not obtain rational points on E in this way.

Geometrically what has happened is that L intersects E in three points, one of which is
S, and the best that can be said of the other two is that their coordinates will involve a
single square root. It is not an accident that L N E consisted of three points here, whereas
the intersection of L with a circle in the previous section had two points. These are special
cases of the following general result:

Bezout’s Theorem (almost): It is almost true that the intersection of a curve f(z,y) =0
of degree m with a curve g(z,y) = 0 of degree n consists of exactly mn points.

To make the theorem true, some care must be taken. For instance, the intersection of
ry = 0 and (2% + y?)y = 0 has infinitely many points, not 2 - 3 = 6 as predicted, because
both curves contain the curve y = 0. Therefore one should insist that the two curves do not
have a curve in common. Algebraically, this is equivalent to imposing the condition that
f(z,y) and g(x,y) have no common factor.

With this assumption, it is now true that the curves intersect in at most mn points. But to
get exactly mn points, three more modifications to the problem are required. As stated, the
theorem gives the wrong answer for the number of real points in the intersection of z —2 =0
with 22 + y? = 1. To get the correct number of intersection points (1 -2 = 2), one should
allow the intersection points (2,v/—3) and (2, —v/—3) with complex coordinates. Another
problem is illustrated by the example in which one intersects x — 1 = 0 with 22 + ¢y = 1.
We again expect 2 intersection points, but there is only one, the point (1,0) where the line
is tangent to the circle. The fix this time is to count intersection points with multiplicity:
points where two curves meet tangentially count extra! The third problem is that certain
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curves such as y — 1 = 0 and y — 2 = 0 do not meet as many times as they are supposed to.
One finds the “missing intersection points” by adjoining a “line of points at infinity” to the
plane, to form the projective plane P2. The lines y — 1 = 0 and y — 2 = 0 meet at one of the
points on this line at infinity. (We will not discuss this in detail here.)

The precise version of Bezout’s Theorem reads as follows:

Bezout’s Theorem: Let X and Y be curves of degrees m and n in the projective plane
over the complex numbers. If X and Y have no curves in common, then the number of
intersection points in X N'Y with complex coordinates, counted with multiplicities, equals
mn exactly.

6. THE ADDITION LAW ON ELLIPTIC CURVES

Let E be an elliptic curve defined over (. We have seen that a line L with rational slope
passing through one rational point on £ need not intersect £ in rational points only. But if L
passes through two rational points on E, then the third intersection point must be rational.
This is because a cubic polynomial with two rational roots must have all its roots rational.
One caveat is required, however: in order to be guaranteed to have three intersection points,
one must interpret intersections in the sense of Bezout’s Theorem; in other words, one really
should work in the projective plane P? over the complex numbers, and count intersection
points with multiplicities. It turns out that among all the points at infinity in the projective
plane, only one is on the elliptic curve; i.e., the line at infinity intersects £ only in one point
(with multiplicity 3, though!)

For an example, let us go back to the elliptic curve E of the previous section with equation
y* = x(x+5)(x —5). Let us find the third intersection point U of E with the line L through
S = (—4,6) and T" = (0,0). The equation of L is y = (—3/2)x, so the z-coordinates of the
points in E N L are solutions to

[(=3/2)a]* = x(x + 5)(x — 5)
0=2a®—(9/4)2* — 252
0=2a(z+4)(x —25/4).

As usual, the factors x and x 4+ 4 had to be there, because S and T are in £ N L. Now
we know that the z-coordinate of U is 25/4, and using the equation of L we find that
U=(25/4,-15/8).
Using this operation of taking two rational points and producing a third, we can develop
a way to “add” two points. One says that the set of rational points on F can be given
the structure of an abelian group. This means that there is an operation + that takes two
rational points P, ) on E and produces a new rational point P 4+ () on E, such that the
following axioms are satisfied:
e (P+Q)+ R=P+(Q+ R) for all rational points P,Q, R on E.
e There exists a rational point O on E such that P4+ O = P and O + P = P for all
rational points P on F.
e For any rational point P on E there exists a point @ (also called —P) such that
P+@Q=0and Q+P=0.
o P+ (Q =@+ P for all rational points P and () on E.

The specific addition rule on the elliptic curve is characterized by the following rules:
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1. The point O mentioned in the abelian group axioms is the unique point on E at infinity
mentioned earlier.

2. If a line L intersects E in three rational points P, @, R (listed with multiplicity), then
P+Q+R=0.

Note: a line passes through O if and only if it is vertical or is the “line at infinity.”

As an example, let us compute S + T', where S = (—4,6) and 7' = (0,0). We already
found that the line y = (—3/2)x intersects E in the points S, T, and U = (25/4,—75/8).
Therefore, by Rule 2, S+ T + U = 0. Thus S + T = —U. The vertical line x = 25/4
intersects E in the three points U, V = (25/4,75/8) and O, so U +V + O = O. Hence
V=-U,soS+T=V=(25/4,75/8).

In general, the recipe for adding two points A and B on an elliptic curve E is as follows:
draw the line L through A and B. (If A = B, draw the line tangent to £ at A, in order
to get a line that intersects F at A with multiplicity at least 2.) Find a third point C' such
that L N E consists of A, B, and C' (listed with multiplicity if necessary). If C' = O, then
A+ B equals O; if C # O, A+ B equals the reflection of C' in the z-axis.

7. GENERATING ALL THE RATIONAL POINTS

It turns out that for some elliptic curves over Q, such as y? = 2% —x, there are only finitely

many rational points, while for others, such as the example y? = x(z +5)(z —5) above, there
are infinitely many.

But in any case there is a deep theorem, proved by Mordell, that says that the group of
rational points on an elliptic curve E is “finitely generated.” This means there is a finite
list of rational points S on E such that all rational points on E can be generated from the
points in S by iteratively applying + to pairs of points.

On the other hand, it is not known whether there exists an algorithm that takes the
equation of an elliptic curve and outputs a finite list S of generating points as above. Re-
searchers in number theory have spent about 70 years trying to prove the existence of such
an algorithm, but the problem is still unsolved!

8. BEYOND ELLIPTIC CURVES

A special case of an even deeper theorem of Faltings shows that if X is a nonsingular®
curve defined over Q of degree greater than 3, then there are only finitely many rational
points on X. Faltings was awarded the Fields Medal (the mathematical equivalent of the
Nobel Prize) for proving this theorem.

From the algorithmic point of view, however, things are still very mysterious: it is not
known whether there is a method for actually listing the rational points on a given nonsin-
gular curve of degree greater than 3.

For example, the French mathematician Jean-Pierre Serre challenged the mathematical
community many years ago to prove that the eight obvious rational points on z* + y* = 17
are the only ones, but no one has succeeded in doing this so far. For all we know, there could
be others.

3We have not defined this term, but loosely speaking it means that X has no “corners” or points where
the curve “crosses itself.”
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9. FURTHER READING

If you would like to read more about elliptic curves, you could try the book Rational points
on elliptic curves by Silverman and Tate, Undergraduate Texts in Mathematics, Springer-
Verlag, New York, 1992. It is written at a fairly high level, though: it is really intended for
junior and senior undergraduate mathematics majors.

10. PROBLEMS

There are a lot of problems here. Just do the ones that interest you.

1.

ot

How many constants are needed in the general equation of a plane curve of degree n?
(Check that your formula gives the right answer, 10, for the case n = 3.)
Let f(z) = 23 + Az + B where A and B are numbers. Let A = —(4A3 +27B?). Prove
that
(a) f(z) has a multiple root if and only if A = 0.
(b) f(x) has three distinct real roots if and only if A > 0.
(¢) f(x) has one real root and two non-real roots if and only if A < 0.
(Hint: f(z) factors completely into linear factors over the complex numbers. Since
there is no 2 term in f(z), the sum of the zeros of f(z) is 0, and the factorization has
the form

fl)=(x—r)(z—3s)(z+r+s)
for some complex numbers  and s. Calculate A in terms of r and s and factor it.)

The number A is called the discriminant; it plays a role analogous to that of b> — 4ac
for quadratic polynomials.

It turns out that the real points on the elliptic curve y?> = 2® + Az + B form two
connected components if A > 0 and only one connected component if A < 0. (Loosely
speaking, a connected component is a piece you can draw without lifting your pencil
from the paper.) Can you explain this, using the previous problem?

Parameterize the rational points on the hyperbola 22 — 2% = 1.

Parameterize the rational points on the sphere 22 + y? + 2% = 1.

(a) Prove that the circle x? +3* = 3 has no rational points. (Hint: show that a rational
point would give rise to a triple of integers (a,b,c) not all divisible by 3, such that
a® + b* = 3c®. Examine the possibilities for a, b, ¢ modulo 3.)

(b) Find some other integers n > 0 such that 22 + y* = n has no rational points.
Let X be the curve y? = 23 + 2%

(a) Is X an elliptic curve?

(b) Draw a sketch of the curve X. The point P = (0,0), where two “branches” cross,
is called a node, which is the simplest kind of singularity.

(c) Show that using lines of rational slope through the special point P yields a
parameterization of the rational points on X. (You might need to exclude P and/or to
exclude certain slopes.)

Let E be the elliptic curve y*> = z(z + 5)(z — 5) used in our examples. List all the
rational points on E you know, and then calculate P+ @) for some pairs of these to find
more.

Let E be an elliptic curve, and let P be a point on E other than O. Show that
P + P = O if and only if the y-coordinate of P is zero. (This shows that in an elliptic
curve, P+ P = O does not imply P = O! One cannot divide by 2!)
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10. Find an elliptic curve with a rational point P # O satistying P+ P+ P = O. Hint: if a
line L intersects E only at a single point P, and in particular does not pass through O
(i.e., it is not vertical and is not the line at infinity), then by Bezout’s Theorem, LN E
must be P with multiplicity 3, so P+ P+ P = 0.

11. Find eight rational points on the curve z* + y* = 17.
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