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COMPLEX NUMBERS IN GEOMETRY

ZVEZDELINA STANKOVA–FRENKEL, MILLS COLLEGE

1. Let O be a point in the plane of 4ABC. Points A1, B1, C1 are the images of
A, B, C under symmetry with respect to O. Prove that the circumcircles of
4ABC, 4A1B1C, 4A1BC1 and 4AB1C1 pass through the same point.

2. ABCD is inscribed in circle k with center O. The perpendiculars through
A to the sides AB and AD intersect sides CD and BC in points M and N ,
respectively. Prove that line MN passes through O.

3. Let AB and CD be two chords in circle k. Let M be the intersection of the
perpendiculars from A to AB and from C to CD; and let N be the intersection
of the perpendiculars from B to AB and from D to CD. Prove that line MN
passes through the intersection of lines BC and AD (if these two intersect),
or is parallel to them (if they are parallel to each other).

4. (Simpson) Prove that the feet of the perpendiculars dropped from a point
on the circumcircle k of 4ABC to the sides of the triangle are collinear (cf.
Fig. 4a.)

Figure 4a Figure 4b

5. (Simpson) More generally, let S be the area of 4ABC, R – the circumradius,
and d – the radius of a circle ε concentric to k. Let A1, B1 and C1 be the
feet of the perpendiculars dropped from an arbitrary point on ε to the sides
of 4ABC. Prove that the area S1 of 4A1B1C1 is given by the formula
S1 = 1

4
S
∣∣1 − d2

R2

∣∣. In particular, when ε = k, then S1 = 0, and hence A1, B1

and C1 are collinear (cf. Fig. 4b.)

THESE NOTES ARE FROM THE MATHEMATICAL OLYMPIAD SUMMER PROGRAM’99.
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6. (Newton) Quadrilateral PQRS is circumscribed around circle k with center O.
Prove that the midpoints of the diagonals of PQRS and point O are collinear.

7. (Gauss) If the two pairs of opposite sides of a quadrilateral intersect, prove
that the midpoint of the segment connecting their intersection points lies on
the line through the midpoints of the diagonals.

8. Let H be the orthocenter of 4A1A2A3. The circle with diameter A3H inter-
sects sides A2A3 and A1A3 in points P and Q respectively. Prove that the
tangents at P and Q to k intersect each other at the midpoint of side A1A2.

9. Let k with center O be the circumcircle of 4A1A2A3. Let A3O intersect side
A1A2 in point M ; let A3P3 be the altitude, and E be the Euler center of 9
points for 4A1A2A3. Prove that N , E and P3 are collinear.

10. In acuteangled 4ABC, the orthocenter H divides the altitude BD in ratio
BH : HD = 3 : 1. Prove that ∠AKC = 90◦, where K is the midpoint of BD.

11. The angles of 4ABC form a geometric series with ratio 2. Prove that the
midpoints of its sides and the feet of its altitudes are vertices of a regular
7–gon.

12. In the plane of 4ABC there exist two points U and V such that 4AUV ∼
4V BU ∼ 4UV C, and these three triangles are equally oriented. Prove that
these three triangles are also similar to 4ABC.

13. B, C and P lie on a circle k with center O. The tangents to k at B and C
intersect in A; the perpendicular to AP at P intersects OB and OC in D and
E. DM and EN are the perpendiculars from D and E to OA. Prove that

(a) 4OAD ∼ 4OEA.
(b) M and N are images of each other under inversion with respect to k.

14. Given 4A1A2A3 with different lengths of the sides, let Mi be the midpoint of
the side opposite to Ai, Ti – the point of tangency of this side with the incircle
k, Si – the symmetric point of Ti with respect to the angle bisector of ∠Ai

(i = 1, 2, 3.) Prove that lines M1S1, M2S2 and M3S3 intersect in a point on k.

15. In 4ABC prove that the angle bisector of ∠A, the midsegment parallel to
AC, and the line joining the tangent points of the incircle with sides BC and
CA, are concurrent.

16. In rectangle ABCD, the angle bisector of ∠B intersects diagonal AC and
side AD in E and F , respectively. A line through E parallel to AB intersects
diagonal BD in K. Prove that line FK is perpendicular to AC.

17. Given a non-rectangular parallelogram ABCD, a circle k with diameter AC
intersects lines AB and AD in points M and N (other than A.) Prove that
lines BD, MN and the tangent at C to k are concurrent (or all parallel).
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18. Let P and C lie on a semicircle s with diameter AB, so that arcs BC and CD
are equal. If AC ∩BP = E and AD ∩ CP = F , then prove EF ⊥ AD.

19. ABCD is circumscribed around circle k. Let l1 and l2 be two arbitrary tan-
gents to k, different from the sides of ABCD. The distances from A, B, C,
D to li are ai, bi, ci, di (i = 1, 2.) Prove that a1b2c1d2 = a2b1c2d1.

20. Let tA and tB be the tangent to circle k at two diametrically opposite points
A and B on k. Through point C on tA (C 6= A) draw two chords D1E1 and
D2E2 in k. Prove that the rays AD→

1 and AD→
2 cut a segment from tB of

length equal to that of the segment cut on tB by the rays AE→
1 and AE→

2 .

21. On a semicircle s with diameter AB take arbitrary points C and D. Points
P , Q and R are the midpoints of AC, CD and BD. Through points P and R
draw lines perpendicular to AQ and BQ, respectively, and let them intersect
the tangents to s at A and B at points S and T , respectively. Prove that ST
and CD are parallel.

22. Let O and H be the circumcenter and orthocenter of 4A1A2A3. Lines A1H,
A2H and A3H intersect the circumcircle k of 4A1A2A3 in points Q1, Q2

and Q3, respectively. Prove that the lines through Q1, Q2 and Q3, parallel
correspondingly to OA1, OA2 and OA3, are concurrent.

23. Prove that on the circumcircle k of 4ABC there exist exactly three points
X (6= A) with the following property: X is the midpoints of the segment cut
by the arms of ∠BAC on the tangent through X to k. Prove also that the
orthocenter of the triangle with vertices these three points is the midpoint of
side BC (cf. Fig. 23.)

Figure 23 Figure 24 Figure 27

24. (Moscow’97 X) Each side of a polygon is extended to twice its length at one
of its ends while going around the polygon in counterclockwise direction. If
the newly obtained ends of segments form a regular polygon, prove that the
original polygon is also regular (cf. Fig. 24.)
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25. (Sorovska’97 IX) Point C lies inside 4ABD so that 4ABC is right and
isosceles with hypothenuse AB = 2, and CD = 1. On the ray through C and
perpendicular to and intersecting AD draw segment CK = AD. Similarly, on
the ray through C and perpendicular to and intersecting BD draw segment
CM = BD. Prove that points K, D and M are collinear.

26. (MOSP’99 test) Let H, O and R be the orthocenter, circumcenter and circum-
radius of 4ABC. Let A1, B1 and C1 be the reflections of A, B and C across
lines BC, CA and AB. Prove that A1, B1 and C1 are collinear iff OH = 2R.

27. (IMO’99) Circles k1 and k2 lie inside circle k and are tangent to k at respective
points M and N . k1 passes through the center of k2. The common chord of
k1 and k2 hits k at A and B; lines MA and MB intersect k1 again at C and
D. Prove that CD is tangent to k2. (cf. Fig. 27.)

Useful Formulas

28. 4ABC and 4A1B1C1 are similar and equally oriented (cf. Fig. 28) iff

(b− a)

(c− a)
=

(b1 − a1)

(c1 − a1)
·

29. Three distinct points A, B and C are collinear iff
(b− a)

(c− a)
=

(b− a)

(c− a)
·

Figure 28 Figure 30

Definition. Let a = x + iy and b = u + iv with x, y, u, v ∈ R. Define

det{ab} = xv − yu = det

∣∣∣∣ x y
u v

∣∣∣∣
Note that det{ab} equals half of the oriented area of 4OAB, where the sign is + if
∠AOB ≤ 180◦ in counterclockwise direction, and − otherwise. Determinants, as de-
fined above, are anticommutative, distributive, and linear with respect to multiplying
by real numbers.

30. Three points A, B and C are collinear (cf. Fig. 30) iff

det{ab}+ det{bc}+ det{ca} = 0.
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31. Lines AB and CD are perpendicular iff

(b− a)

(c− d)
= −(b− a)

(c− d)
·

32. If A and B are on the unit circle, then a point M lies on line AB iff it satisfies
the equation (cf. Fig. 32):

a + b = m + mab.

Figure 32-33 Figure 34 Figure 35 Figure 36

33. If T lies on the unit circle k, then the tangent to k at Z is described by the
equation (cf. Fig. 33):

2t = z + zt2.

34. If four points A, B, C and D lie on the unit circle, then the intersection point
Z of lines AB and CD is given by (cf. Fig. 34):

z =
ab(c + d)− cd(a + b)

ab− cd
=

(c + d)− (a + b)

cd− ab
.

35. Let A, B and T lie on the unit circle k. The intersection point Z of line AB
and the tangent to k at T is given by (cf. Fig. 35):

z =
t(2ab− ta− tb)

ab− t2
·

36. If points A and B lie on the unit circle k and are not diametrically opposite,
then the intersection point Z of the tangents to k at A and B, and its inverse
image Z ′ with respect to k are given by (cf. Fig. 366):

z =
2ab

a + b
=

2

a + b
, z′ =

a + b

2
·
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37. Let A and B lie on the unit circle and D is an arbitrary point in the plane.
Then the foot Z of the perpendicular from D to line AB is given by (cf. Fig.
37):

z =
1

2
(a + b + d− abd)·

38. Let T1, T2, S1 and S2 lie on the unit circle k. Then chords T1S1 and T2S2 are
parallel iff t1s1 = t2s2 (cf. Fig. 38.)

Figure 37 Figure 38 Figure 39 Figure 40

39. Four points A, B, C and D in the plane are concyclic iff (cf. Fig. 39):

(a− b)(c− d)

(a− d)(c− b)
∈ R.

40. If 4ABC is inscribed in the unit circle k, then its orthocenter H and its center
E of the Euler circle of 9 points are given by (cf. Fig. 40):

h = a + b + c, e = (a + b + c)/2.

41. The perpendicular bisector of segment AB has equation (cf. Fig. 41):

z(a− b) + z(a− b) = aa− bb.

If A and B lie on the unit circle, then the above is z = zab.

Figure 41 Figure 42 Figure 43

42. If vertex C of 4ABC is the center of the complex coordinate system, then
the circumcenter Z of 4ABC is given by (cf. Fig. 42):

z =
ab(a− b)

ba− ab
·
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43. Let AB be a chord on the unit circle, and let C be an arbitrary point. Then
the reflection C1 of C across line AB is given by (cf. Fig. 43):

c1 = a + b− cab.

Short Appendix on Complex Numbers

The points in the usual coordinate plane P can be thought of as complex numbers:
the point A = (a, b) can be thought of as the complex number z = a + bi with
a, b ∈ R. Thus, the x-coordinate of A corresponds to the real part of z: Re(z) = a,
and the y-coordinate of A corresponds to the imaginary part of z: Im(z) = b. Recall
how we add and subtract complex numbers: this corresponds exactly to addition and
subtraction of vectors originating at (0,0) in the plane. For instance, if z1 = a1 + b1i,
then z + z1 = (a + a1) + (b + b1)i; this corresponds exactly to what would happen if
we add two vectors ~v and ~v1 which start at the origin and end in (a, b) and (a1, b1),
respectively: ~v + ~v1 would start at the origin and end in (a + a1, b + b1).

Multiplication of complex numbers can be also translated in terms of vectors in the
plane. To multiply z and z1 from above, we perform the usual algebraic manipulations:

z · z1 = (a + bi) · (a1 + b1i) = aa1 + ab1i + ba1i + bb1(i
2) = (aa1 − bb1) + (ab1 + ba1)i.

The resulting “vector” ~v′ from this multiplication corresponds to (aa1−bb1, ab1+ba1),
and it can be interpreted geometrically from the starting vectors ~v and ~v1. I urge you
to check in a few simple examples that ~v′ can be described as follows: add the angles
that ~v and ~v1 form with the x-axis – this is going to be direction of ~v′; for the length
of ~v′, take the product of the lengths of ~v and ~v1. (Hint: use the so-called “polar
form” of vectors and some simple trigonometric identities.)

We introduce here one further notion: the conjugate of a complex number. If
z = a + bi is a complex number, then the conjugate of z, denoted by z, is simply
the complex number obtained from be z by switching the sign of z’s imaginary part:
z = a − bi. Geometrically, the points (a, b) and (a,−b) are reflections of each other
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across the x-axis. The “miraculous” property of conjugates is that their product is
always a real number:

z · z = (a + bi) · (a− bi) = a2 + b2 ∈ R.

Note that a complex number z is real iff z = z (i.e. z lies on the x–axis), and it is
purely imaginary iff z = −z (i.e. z lies on the y–axis).
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