BAY AREA MATHEMATICAL ADVENTURE

GEOMETRIC PUZZLES AND CONSTRUCTIONS.
THREE DIFFERENT VIEWS OF DESARGUES’ THEOREM

BY ZVEZDELINA STANKOVA-FRENKEL, MILLS COLLEGE

Problem 1. (For Everyone to Play With) Three congruent squares with bases AM, M H and
H B, are put next to each other to form a rectangle ABCD (see Fig.1). Show that !

LAMD + ZAHD + ZABD = 90°.

Problem 2. (For the Die-Hards) Let ABCDEF be a convex hexagon. Let P,Q, and R be
the intersections of the lines AB and EF, EF and CD, CD and AB, respectively. Let S,T,U be
the intersections of the lines BC' and DFE, DE and FA, FA and BC, respectively. Show that if
AB/PR = CD/RQ = EF/QP, then BC/US = DE/ST = FA/TU. (Math Olympiad Summer
Program’98, Homework Assignment.) 2

!Note: The Problem was discussed at length at the Math Circle Workshop on June 6th 1998 in Lawrence Hall
of Science. Let’s see if anyone remembers the beautiful solution we saw there! Now, imagine you are in 7-8th grade,
and you haven’t yet heard of “trigonometry” (oops, that’s a hint for the advanced! :-)), and your whole world of
geometric tricks consists of similar and congruent triangles, and, say, you know that the sum of angles in a triangle
is 180°. Can you do with? Play with it and see how far you can get. Solutions to this Problem 1 and Problem 2 will
be handed after the talk.

*Warning: Don’t try this at home unless you really know what you are doing! This problem is really hard. When
you see the solution you will be surprised that it doesn’t require any advanced mathematical tools; BUT how one
can come up with such a solution — that where the mystery is! So, good luck. :-)
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Problem 3. (Desargues’ Theorem) AABC and AA;B;C; are positioned in such a way that
lines AA{, BBy, and CC] intersect in a point O. If lines AB and ABy, AC and A;Cy, BC and
B, (] are pairwise not parallel, prove that their points of intersection, L, M and N, are collinear.
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Problem 4. (Pascal’s Theorem) If the hexagon ABCDEF is cyclic and its opposite sides, AB
and DFE, BC and EF, CD and FA, are pairwise not parallel, prove that their three points of
intersection, X, Y and Z, are collinear.

F

Problem 5. (Brianchon’s Theorem) If the hexagon ABCDEF is circumscribed around a
circle, prove that its three diagonals AD, BE and C'F' are concurrent.




Pascal’s Theorem

Menelaus ‘

Theorem

Plane
Geometry

Inversion

Euclidean/
Non-Euclidean
Geometry

Exit into
3d-space

3-dimensional
Geometry

Brianchon’s Theorem



5

Note: “We say that several points are collinear if they lie on a line. Similarly, several points are
concyclic if they lie on a circle; an inscribed (cyclic) polygon has its vertices lying on a circle. If
three distinct points A, B and C are collinear, then the directed ratio AB/CB is the ratio of the
lengths of segments AB and CB, taken with a sign “+” if the segments have the same direction
(i.e. B is not between A and C), and with a sign “—” if the segments have opposite directions (i.e.
B is between A and C'). Several objects (lines, circles, etc.) are concurrent if they all intersect in
some point.

Problem 6. (Menelaus’ Theorem) Let Ay, By and C; be three points on the sides BC, C' A and
AB of AABC. Then they are collinear if and only if

AB, CTA, BC,

CB, BA, AC,

A

FIRST PROOF OF DESARGUE’S THEOREM VIA MENELAUS

Apply Menelaus’ Theorem 3 times to, respectively, AOBC and line NB1Cy, AOAB and line
LBlAl, and AOAC and line MA101:

CN BB; 0C;

BN 0B, 00, _ °
BL AA, OB _ |
AL OA, BB,

AM CCi 04 _ |

CM OC, AA,
Now we multiply the three equalities and cancel out everything we can. We are left with

AM ON BL _
CM BN AL
which again by Menelaus (the reverse direction of the theorem) implies that points M, N and N
are collinear. O

Question: What happens if some of the pairs of lines in the problem (or in the solution) do not
intersect, i.e. they are parallel? Can you still solve the problem using a modification of the above
method?



SECOND PROOF OF DESARGUE’S THEOREM VIA PROJECTIVE GEOMETRY

It turns out that it is not so bad to have some of the pairs of lines in the setting of Desargues’
be parallel. In fact, making all such lines parallel pairwise is the basis for the Projective Geometry
proof.

There are certain nice transformations in the plane, called projective, which send lines to lines
— nothing really surprising here: say, reflections across a point or across a line, rotations and
parallel translations are examples of such transformations. However, the “magic” of projective
transformations works when we are able to “separate” intersecting lines, i.e. making them parallel
without changing too much the structure of the original picture. This is possible because we add
one extra “line” to the usual plane, called the line at infinity. For every family of parallel lines in
the usual plane there is a (different) point on the line at infinity [. Conversely, any point on [ is
“born” by a (unique) family of parallel lines.

Note that it is very hard to imagine exactly the picture of this augmented plane, called the
projective plane. This is because we are used to think in 3 dimensions, and the projective plane
is simply too complex to be “fitted” in 3d-space. Instead of trying to imagine it, think of the
projective plane as an abstract construction with some useful applications. When you take an
introductory course in algebraic geometry, you will see various descriptions of the projective plane.
These will hopefully help you construct a satisfactory mental image of the projective plane.

But for now, let just glimpse at the magic performed by a well-chosen projective transformation.
In the setting of Desargue’s theorem, consider points L and N. If they exist, it means that the
pairs of corresponding lines intersect, i.e. ABN A1By = L and BC'N B1C; = N. The idea is to
apply a projective transformation to the plane, sending points L and N to the line [ at infinity,
and thus, in effect making line AB parallel to A;B; (they will intersect at a point “at infinity”),
and similarly BC parallel to B1C].

It is now not hard to prove that AC and A;C are also parallel: use similar triangles AOAB ~
AOABy (why?), and AOBC ~ AOB;C; (why?), to conclude that OA/OA; = OB/OB; =
OC/OC;. This in its turn implies that AOCA ~ AOC 1 A; (why?), and therefore AC' is parallel
to A1Cy (why?). T leave the justifications of “why?”’s to the dedicated reader.

So what? The fact that AC and A;C) are parallel means that they intersect at a point of infinity,
namely, M. The nice thing about the projective plane is that no matter what point of view you
choose on it, the picture you will see will be essentially the same — you will see the usual (called
“finite”) plane, and whichever line you won’t see, that you can think of as the “line at infinity”. In
particular, all lines are “created” equal, regardless of whether they are usual lines or the “line at
infinity”. In other words, the fact that all three points L, M and N happen to lie on the “line at
infinity” makes them collinear.
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To finish the proof, one has to apply the inverse of whatever projective transformation was applied
in the beginning in order to obtain the original picture of Desargues’ setting. In the process, the
“line at infinity” LM N will be sent to some line in the usual plane, on which our original points
L, M and N must have been lying on. O

THIRD PROOF OF DESARGUE’S THEOREM VIA EXIT INTO 3D—SPACE

It is very counterintuitive to attempt to solve a (plane) 2d—problem by a 3d—solution. That is, to
cook up an argument in 3d-space which somehow implies our 2d—version. This type of reasoning
is called Ezit into 3d.

In the setting of Desargues’ theorem, imagine that everything originally lines in some plane -,
but we “lift” the ray OCC] vertically from the plane in 3d-space, keeping all lines, triangles and
intersection points the same as before. The goal is then to show that the “new” points L, M and
N lie on a line in 3d—space; we then project our new 3d—picture back to the original 2d—picture in
the plane 7, and necessarily the “space” line [ = LM N will project onto another line /; in . This
line 7, we conclude, must have contained our original points L, M and N, so we will be done.

So, what are we waiting for? The 3d—picture looks as follows:

Note that we have created the three planes v = (OAB), a = (OBC), f = (OCA), which can be
thought of forming part of the pyramid OABC at point, and the two planes formed by the two
new triangles: plane P = (ABC) and plane P, = (41 B,C)).

Then point L is the intersection of lines AB and A;Bj; but line AB is the intersection of planes
P and +, while line A, B is the intersection of planes P; and . In short:

L:ABﬂAlBl:(Pﬂ’y)ﬂ(Plﬂ’y):Pﬂplﬂ’Y.
The serious reader will also verify similarly that
M=PnNnP NG and N=PNP Na.

But planes P and P intersect in some line (why?), which we call on purpose [. Thus, we have
seen above that all three points L, M and N, lie on the line [ = P N P, i.e. they are collinear.
Projecting line [ onto the original plane v yields the wanted line. U



PROOF OF PASCAL’S THEOREM VIA MENELAUS

Create APQR by intersecting the following lines: AB N CD = {R}, CD N EF = {P} and
EF NAB = {Q}. Then apply Menelaus’ Theorem 3 times to APQR and lines XAF, CBZ and
DY E, respectively:

PX RA QF _ |
RX QA DPF
PC RB QZ _ |
RC QB PZ
PD RY QF _
RD QY PE

Now we multiply the three equalities and cancel out everything we can. In particular, note that
RA-RB=RC-RD,QF-QFE =QA-QB and PC-PD = PF-PE, by the Power of Point Theorem
applied consecutively to points R, Q and P, and circle k. Thus, we are left with

PX RY QZ

RX QY PzZ
which again by Menelaus (the reverse direction of the theorem) implies that points X, Y and Z
are collinear. O

PROOF OF BRIANCHON’S THEOREM VIA EXIT INTO 3D

e Create a spacial hexagon A;B,C1D;FE1F; which projects onto the given planar hexagon, as
shown in the picture. (Why does such a hexagon exist? Start with point A; in space, projecting
onto A, and then construct the remaining 5 points one by one; use six pairs of similar triangles to
prove that you will eventually come back to A; in your construction.)

e Note that to prove that diagonals AD, BE and C'F meet in a point, it will suffice to show that
A1Dq, B1Fy and C1F; meet in a point X; (in space) — projecting X7 onto the plane will yield the
required intersection point of the original diagonals.
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e To show that A; D¢, B1FE, and C1F) intersect in space, it suffices to show that every two of them
intersect in space. Indeed, if X, Y and Z are the pairwise intersection of the three segments, AND
we suppose by contradiction that X, Y and Z are distinct, this implies that A;D;, B1F; and C1 Fy
all lie in a plane (together with X, Y and Z). Now that’s a contradiction since Ay B;Cy1DE1F} is
not planar, but spacial by construction.

e To show that, say, A;D; and B1E; intersect in space, it is sufficient to show that lines A;B;
and Dy F; lie in a plane (why?), or equivalently, to show that Ay B; and Dj F; intersect.

e Show that all of the 12 marked angles are equal. (Use again the 12 triangles as above, and
“equal tangents” from a point to a circle.) This means that all six lines formed by the sides of the
spacial hexagon A; B1C1 Dy E;F; form the same angle with the original plane.

e Show that, say, lines A1 By and D1 F; intersect by using two facts: they form the same angle
with the original plane, and equal tangent are obtained after extending DFE and AB until they
meet. (A; By and Dy E; will be parallel if DE and AB are parallel.)

e Put together all pieces above to conclude that the diagonals of the spacial hexagon are con-

current, and hence the diagonals of the original planar hexagon are also concurrent. O
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BAY AREA MATHEMATICAL ADVENTURE
GEOMETRIC PUZZLES AND CONSTRUCTIONS.

BY ZVEZDELINA STANKOVA-FRENKEL, MILLS COLLEGE

Solutions to Problems 1 and 2

Problem 1. (For everyone to Play With) Three congruent squares with bases AM, M H and
H B, are put next to each other to form a rectangle ABCD (see Fig.1). Show that

LAMD + ZAHD + ZABD = 90°.

Solution: Reflect the figure across line DC, i.e. draw three more squares as shown on Fig. 2
below. Connect the new point H; with points D and B. Note that AAHD, ANA1H1D and
AB1BH; are congruent to each other. (Why? They are all right angles with legs of same lengths.)
This allows us to call three angles on the picture by «, and three other by S. In particular,
LAHD = a = ZBlBHl

A, M, H, B,
ol )[5 []
p|[ c
B a
45, a Yy
A M H B

Further, note that ADBH; is a right isosceles triangle. Indeed, |DH,| = |BH;| (Why? Because
of two of the above triangles are congruent. Which triangles do I have in mind?), and

/ZDHB =180° — £DH Ay — £B1H;B =180° —a — = 90°.

The last follows from the fact that a and 8 are the two acute angles in right AAH D, and hence
they sum up to 90°. Thus, in ADBH,, /DBH{ = 45°.

To finish the proof, note that the three wanted angles are ZAM D = 45° (Why? AAMD is also
right isosceles,) ZAHD = « and ZABD = +; and that they appear “miraculously”, in the right
ZABBli

90° = LZABB; = v+ 45° + a. O

Now, everyone understands that the construction in the above solution is really a very original
idea, and there is no guarantee that everyone (or anyone!) will come up with this same idea within
a “finite amount of time”, as mathematicians like to say. Thus, instead we propose here a simple
trigonometric solution, which doesn’t require any original thinking, but has the drawback of giving
us no idea of why these angles sum up to 90°. Enjoy it nevertheless.
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Alternative Solution: Since ZDM A = 45° (from right isosceles AAN D as above,) it suffices to
show that ZAHD + ZABD = 45°. Name these two angles by « and y as above. Since they are
both acute angles, they cannot sum up to more than 180°; thus, if we show that tan(a + ) = 1,
we will be able to conclude that a + v = 45°.

The formula for the tangent of a sum comes to the rescue:

tan a + tan-y

t = .
anfe +7) 1 —tana - tanvy

From AAHD and AABD, respectively, we find tana = |AD|/|AH| = 1/2 and tany = |AD|/|AB| =
1/3. Substituting 1/2 and 1/3 into the above tangent formula yields

1/2+1/3
t ==
(@) = 95173
which I leave to the diligent reader to check that it equals 1. U

Question: Why did I use tangents? Would it be easier to use sines or cosines, or some other
trigonometric function of the angles?

Problem 2. (For the Die-Hards) Let ABCDEF be a convex hexagon. Let P,Q, and R be
the intersections of the lines AB and EF, EF and CD, CD and AB, respectively. Let S,T,U be
the intersections of the lines BC' and DFE, DE and FA, FA and BC, respectively. Show that if
AB/PR = CD/RQ = EF/QP, then BC/US = DE/ST = FA/TU. (Math Olympiad Summer
Program’98, Homework Assignment.)

Solution: The given triple ratios remind us suspiciously of a criterion for similar triangles (SSS).
It is as if someone wants to tell us that APR( is similar to another triangle with sides AB, CD
and E'F, but no such similar triangle can be found on the given picture. So, let’s construct it!

Draw a line through A parallel to P(Q, and another line through B parallel to RQ, and let them
intersect in point O (Would they intersect? Why?) Connect O with E and with D. Our goal is to
prove that AOEF and BCDQO are both parallelograms, and use this to prove what is wanted in
the problem, but let’s not get ahead of ourselves, and let’s do everything step by step.

For starters, do you see any similar triangles? By construction, AABO and APQR are similar:
check out their equal angles a’s and (’s from the parallel lines in our construction. Therefore, the
sides of these two triangles are proportionate, i.e.

AB/PR = BO/RQ = OA/QP.
But we have by hypothesis that
AB/PR =CD/RQ = EF/QP.

Since the first ratio is the same in both equations, all those five ratios are equal, in particular,
BO/RQ = CD/RQ and OA/QP = EF/QP. We conclude that BO = CD and OA = EF.

Recall now that by construction BO is parallel to CD, and OA is parallel to EF. Therefore,
indeed we do have parallelograms AOEF and BCDO.

Now, we can play the same game for ATSU and AFOD, by reversing the above argument. Are
they similar? Since FO and TU are parallel, and DO and SU are parallel (from the parallelograms
above) we conclude that the two triangles have equal angles 4’s and §’s, and therefore they are
indeed similar.

Thus, the sides of AT'SU and AEOD are proportionate:

OD/US = DE/ST = OE/TU.
But OD = BC and OF = F A (again from the parallelograms), thus
BC/US = DE/ST = FA/TU. O



