
BAMO 1999: SOLUTIONS TO PRACTICE PROBLEMS

BAMO PROBLEMS COMMITTEE

Problem 1. Let A and B be two different hospitals that treat exactly the same number of
patients during a year. Each patient suffers from one of two diseases, X or Y . Hospital A cures
a greater percentage of its patients than hospital B. Is it possible that hospital B cures both a
greater percentage of X–patients than A, and a greater percentage of Y –patients than A?

Solution. This is the well-known Simpson’s Paradox: just make B specialize in a riskier disease.
For example, let B treat 90 cancer patients and 10 acne patients, with respective cure rates of
50% and 100%. Let A treat 10 cancer and 90 acne patients, with cure rates of 0% and 70%,
respectively.

Problem 2. Bildert works in a cubicle in an office which consists of 27 cubicles arranged in a
3× 3× 3 cube. Any two cubicles sharing a wall have a connecting door on this wall; for example,
the corner cubicles have exactly 3 doors, while the center cubicle has 6 doors: one on each wall,
one on the floor, and one on the ceiling. If Bildert starts at the central cubicle, can he visit each
of the other 26 cubicles exactly once (i.e. without revisiting any cubicles)?

Solution I. The answer is no. Denote the central cubicle by C, and denote the vertex, edge and
face cubicles by V , E and F , respectively. The trip must start with C and include every one of
the 8 V ’s, 6 F ’s, and 12 E’s. The sequence must begin with CFE. Each cubicle V is adjacent
only to E cubicles, and each F cubicle except for the very first one, is adjacent only to E cubicles.
This means that for the remaining 13 V ’s and F ’s that follow the initial CFE, at least 12 new
E’s are needed. This means that we need at least 13 E’s, impossible.

Solution II. Divide the cubicles into two subsets depending on the parity of the sums of coor-
dinates of each cubicle. (Thus, in the above notation, one subset consists of cubicles C and E’s,
and the other subset consists of F ’s and V ’s.) Each move alternates between the two subsets.
The starting subset has 13 cubicles, while the other subset has 14 cubicles – obviously we cannot
keep alternating, because we’ll run short of cubicles in the starting subset. Hence, Bildert cannot
visit all cubicles without repetitions.

Problem 3. Let a, b, c, d, e, f be positive integers, each at least 2, whose sum is S. Prove that

a(a− 1) + b(b− 1) + c(c− 1) + d(d− 1) + e(e− 1) + f(f − 1) ≤ (S − 10)(S − 11) + 10.

When is equality achieved?

Solution I. Adding −3S + 24 to both sides, makes the inequality equivalent to

(a− 2)2 + (b− 2)2 + (c− 2)2 + (d− 2)2 + (e− 2)2 + (f − 2)2 ≤ (S − 12)2.

Substituting A = a− 2, B = b− 2, etc., this is the same as

A2 + B2 + C2 + D2 + E2 + F 2 ≤ (A + B + C + D + E + F )2.
1



On the left side we have the sum of squares of nonnegative numbers and on the right side we have
the square of the sum. The latter is always larger except when all pairwise products AB, AC, DF ...
are zeros. This happens when all but one of A, B, C, D, E, F are zero, correspondingly, when all
but one of a, b, c, d, e, f are 2.

Solution II. The given inequality can be written as

a2 + b2 + c2 + d2 + e2 + f2 ≤ (S − 10)2 + 20.

Now, for any two numbers x, y ≥ z, we have

x2 + y2 ≤ z2 + (x + y − z)2.(1)

Indeed, this is equivalent to

x2 − z2 ≤ (x + y − z)2 − y2 ⇔ (x− z)(x + z) ≤ (x− z)(x + 2y − z)⇔ 0 ≤ 2(x− z)(y − z),

and the last is true because x ≥ z and y ≥ z. Note that (1) replaces the numbers (x, y) by
(z, x + y − z) without changing the sum of the two numbers, but increases the sum of their
squares. In the original problem, we do this for a, b ≥ 2: we replace (a, b) by (2, a + b− 2):

a2 + b2 ≤ 22 + (a + b− 2)2.

We then do the same for (a+b−2, c): replace them by (2, a+b+c−4), and so on. In the end, we will
have replaced five of the original numbers by 2’s, and the last by a+b+c+d+e+f−10 = S−10.

⇒ a2 + b2 + c2 + d2 + e2 + f2 ≤ 22 + 22 + 22 + 22 + 22 + (S − 10)2 = 20 + (S − 10)2.

Equality is achieved if and only if there are equalities each time we apply (1), i.e. five of the given
numbers are 2’s, and the remaining number is therefore S − 10.

Solution III. We first show the following inequality:

x(x− 1) + y(y − 1) ≤ (x + y − 2)(x + y − 3) + 2, x, y ≥ 2.(2)

Consider two complete graphs, with x and y vertices, respectively. (A complete graph has all
possible edges drawn.) Thus we have

(
x
2

)
and

(
y
2

)
edges in the two graphs. If we glue the graphs

together on an edge, we produce a new graph with x + y − 2 vertices. Count edges: the original
configuration had

(
x
2

)
+
(
y
2

)
edges, while the new configuration has at most

(
x+y−2

2

)
edges. Since

we lost an edge when we glued the two graphs together, we conclude that(
x

2

)
+
(

y

2

)
≤
(

x + y − 2
2

)
+ 1.

This is equivalent to (2) after multiplying by 2. Equality is attained if and only if the new graph
is also complete, i.e. one of the original graphs must have been just an edge (x = 2 or y = 2).
From here, apply consecutively (2) to the desired inequality. Again, maximum is attained if and
only if five of the given numbers are 2’s.

Problem 4. In the O −E game, a round starts with player A paying c cents to player B. Then
A secretly arranges the numbers 1, 3, 5, 7, 9, 11, 13 in some order as a sequence a1, a2, ..., a7, and
B secretly arranges 2, 4, 6, 8, 10, 12, 14 as a sequence b1, b2, ..., b7. Finally, the players show their
sequences and B pays A one cent for each i in X = {1, 2, 3, 4, 5, 6, 7} such that ai < bi. This
finishes the round. What number c would make the game fair? (The game is fair if the total
payments by A to B equals the total payments by B to A after all possible distinct rounds are
played exactly once.)
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Solution I. Let k be in X. There are 7!6!(8 − k) choices of the sequences a1, a2, ..., a7 and
b1, b2, ..., b7 for which 2k−1 is an aj with aj < bj . Indeed, the a’s can be any of the 7! permutations
of the 7 odd integers; then j is the subscript such that aj = 2k − 1, and bj must be one of the
8− k numbers in {2k, 2k + 2, ..., 14}; the remaining 6 even integers can be arranged in 6! ways.

The total of the payments by B to A for the (7!)2 possible rounds is then

7∑
k=1

7!6!(8− k) = 7!6!(7 + 6 + · · ·+ 1) = 7!6!28 = (7!)24.

A pays to B a total of (7!)2c; so c = 4 makes the game fair.

Solution II. For those who know that the sum of expected values (averages) is the expected
value of the sum, we note that in the first spot, 1, 3, 5, 7, 9, 11, 13 are equally likely, and hence
the average payment is the average of the payments for each of these numbers, 7/7, 6/7, 5/7, 4/7,
3/7, 2/7, 1/7. Hence in the first spot the average payment is

(7/7 + 6/7 + 5/7 + 4/7 + 3/7 + 2/7 + 1/7)
7

= 4/7 of a cent.

Since there are 7 spots, with an average payment of 4/7 cent each, the total payment averages 4
cents; so c = 4 makes the game fair.

Problem 5. 4ABC is inscribed in a circle k with center O so that ∠ACB = 120o.

(a) If H is the orthocenter of 4ABC, prove that A,B,O,H lie on a circle with center the
midpoint of the arc ACB. (The orthocenter of 4ABC is the intersection point of its three
altitudes.)

(b) If G is the centroid of 4ABC, and I is the incenter of 4ABH, prove that the points
O,G, I,H lie on a line. (The centroid of4ABC is the intersection point of its three medians:
a median connects a vertex of 4ABC with the midpoint of the opposite side; the incenter
of 4ABC is the intersection of its three angle bisectors.)

Solution.1 Let O1 be the midpoint of the arc ACB and let R be the radius of k.

(a) Solution I. 4AOO1 and 4BOO1 are equilateral (∠ACB = 120o ⇒ ∠AOB = 120o.) The
segments AB and OO1 intersect each other in their midpoint, D. If line AO intersects k in point
P , then ∠ABP = ∠ACP = 90o, i.e. PB||CH and PC||BH, and thus PBHC is a parallelogram.
From here, CH = PB. Since OD is a midsegment in 4ABP , then PB = 2OD = OO1 and
CH = OO1 = R. Again, OCHO1 is a parallelogram; moreover, it is a rhombus for OC = R.
Thus, O1H = R and the points A,B,O,H lie on a circle k1 with center O1 and radius R.

(a) Solution II. Look at the quadrilateral CMHN : it contains two right angles (at M and N),
and the angle at C is 120o, so the angle at H is 60o: ∠AHB = 60o. But ∠AOB = 120o (as above),
so AHBO do lie on the same circle. Since A,O,B lie on a circle with center O1 (as above), H is
forced to lie on the same circle.

1This problem was given at a national contest in Bulgaria in 1994.
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(b) Solution I. In k1, ∠BO1H is central, and ∠BAH is inscribed, so that ∠BO1H = 2∠BAH
and ∠BHO1 = 90o−∠BAH = ∠AHC. In the rhombus OCHO1 the diagonal OH is the bisector
of ∠CHO1. Hence, ∠AHO = ∠AHC + ∠CHO = ∠BHO1 + ∠OHO1 = ∠BHO ⇒ OH is the
angle bisector also of ∠AHB. This means that point I lies on OH.

Let OH intersect the median CD in point G. We will show that G is the medicenter of
4ABC by showing first that CG = 2GD. Indeed, if E and F are the midpoints of CG and HG,
then EF is a midsegment in 4CHG with EF = CH/2 = OD and EF ||OD (from (a)). Then
4EFG ∼= 4DOG, and EG = GD, CG = 2EG = 2GD. Thus, G is the medicenter of 4ABC,
and the points I and G lie on the line OH.
(b) Solution II. For those who know about the Euler line: points O,G, H lie on the Euler line
of 4ABC (we even know the ratio OG : GH = 1 : 2.) Thus, it remains to show that I lies on the
line OH, or equivalently, that OH is the angle bisector of ∠AHB. Recall that k1 was the circle
described around AHBO from part (a). Since OA = OB, the corresponding arcs OA and OB on
k1 are equal, and hence the inscribed angles are equal: ∠AHO = ∠BHO.
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