Vera Serganova Diophantine equations.¹

Homework Problems

1. Solve the following Diophantine equations:

(a) 161x + 7y = 1;(b) 4x + 13y = 1;(c) 3x + 5y = 41;(d) xy = x + y;(e) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1.$

2. Show that the equations below do not have integer solutions:

(a) $x^4 - y^4 = 10;$ (b) $x^2 + y^2 = 7z^2;$ (c) $x^2 - 3y^2 = 2;$ (d) $x^2 - 3y^2 = 7;$ (e) $x^2 - 2y^2 = 3$

3. Write recurrent formulae for all integer solutions of the following equations:

(a)
$$x^2 - 2y^2 = 2;$$

(b) $x^2 - 3y^2 = 1;$
(c) $x^2 - 3y^2 = 6.$

4. Show that if p is prime then the equation $x^2 - py^2 = 1$ has infinitely many solutions.

(a) Show that one can find an integer b such that $x^2 - py^2 = b$ has infinitely many solutions.

(b) Let (x_1, y_1) and (x_2, y_2) be two solutions of the equation from (a), x_1 and x_2 have the same remainder when divided by b and y_1 and y_2 have the same remainder when divided by b. Prove that $\frac{x_1+y_1\sqrt{p}}{x_2+y_2\sqrt{p}}$ belongs to $Z[\sqrt{p}]$ and has norm 1.

(c) Using (b) obtain infinitely many solutions for $x^2 - py^2 = 1$.

5. Obtain a formula for all rational solutions of $x^2 + y^2 = 1$. For this consider an inversion on the plane with center at the point (0, 1) and radius 2. Show that the inversion maps the *x*-axis to the unit circle with center at the origin. Prove that a rational point on *x*-axis moves to a point with rational coordinates on the circle.

¹ c by Berkeley Math Circle, 1998