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Definition 2. The degree of point A with respect to a circle k(O,R) is defined as

dk(A) = OA2 −R2.

This is simply the square of the tangent segment from A to k. Let M be the midpoint of AB in
4ABC, and CH – the altitude from C, with H ∈ AB (cf. Fig.5-6.) Mark the sides BC, CA and
AB by a, b and c, respectively. Then

|a2 − b2| = |BH2 −AH2| = c|BH −AH| = 2c ·MH,(1)

where M is the midpoint of AB.

Definition 3. The radical axis of two circles k1 and k2 is the geometric place of all points which
have the same degree with respect to k1 and k2: {A | dk1(A) = dk2(A)}.

Fig. 5-7

Let P be one of the points on the radical axis of k1(O1, R1) and k2(O2, R2) (cf. Fig.7.) We have
by (1):

PO2
1 −R2

1 = PO2
2 −R2

2 ⇒ |R2
1 −R2

2| = |PO2
1 − PO2

2| = 2O1O2 ·MH,

where M is the midpoint of O1O2, and H is the orthogonal projection of P onto O1O2. Then

MH =
|R2

1 −R2
2|

2O1O2
= constant ⇒ point H is constant.

(Show that the direction of MH→ is the same regardless of which point P on the radical axis we
have chosen.) Thus, the radical axis is a subset of a line ⊥ O1O2. The converse is easy.
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Lemma 1. Let k1(O1, R1) and k2(O2, R2) be two nonconcentric circles circles, with R1 ≥ R2, and
let M be the midpoint of O1O2. Let H lie on the segment MO2, so that

HM = (R2
1 −R2

2)/2O1O2.

Then the radical axis of k1(O1, R1) and k2(O2, R2) is the line l, perpendicular to O1O2 and passing
through H.

What happens with the radical axis when the circles are concentric? In some situations it is
convenient to have the circles concentric. In the following fundamental lemma, we achieve this by
applying both ideas of inversion and radical axis.

Lemma 2. Let k1 and k2 be two nonintersecting circles. Prove that there exists an inversion
sending the two circles into concentric ones.

Proof: If the radical axis intersects O1O2 in point H, let k(H,dki
(H)) intersect O1O2 in A and

B. Apply inversion wrt k′(A,AB) (cf. Fig. 8.) Then I(k) is a line l through B, l ⊥ O1O2. But
k1 ⊥ k, hence I(k1) ⊥ l, i.e. the center of I(k1) lies on l. It also lies on O1O2, hence I(k1) is
centered at B. Similarly, I(k2) is centered at B.

Fig. 8

1. Warm-up Problems

Problem 19. The radical axis of two intersecting circles passes through their points of intersection.

Problem 20. The radical axes of three circles intersect in one point, provided their centers do not
lie on a line.

Problem 21. Given two circles k1 and k2, find the geometric place the centers of the circles k
perpendicular to both k1 and k2.
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2. Problems

Problem 22. A circle k is tangent to a line l at a point P . Let O be diametrically opposite to P
on k. For some points T, S ∈ k set OT ∩ l = T1 and OS ∩ l = S1. Finally, let SQ and TQ be two
tangents to k meeting in point Q. Set OQ ∩ l = {Q1}. Prove that Q1 is the midpoint of T1S1.

Problem 23. Consider 4ABC and its circumscribed and inscribed circles K and k, respectively.
Take an arbitrary point A1 on K, draw through A1 a tangent line to k and let it intersect K in
point B1. Now draw through B1 another tangent line to k and let it intersect K in point C1.
Finally, draw through C1 a third tangent line to k and let it intersect K in point D1 (cf. Fig. 9.)
Prove that D1 coincides with A1. In other words, prove that any triangle A1B1C1 inscribed in K,
two of whose sides are tangent to k, must have its third side also tangent to k so that k is the
inscribed circle for 4A1B1C1 too.

Figures 9-11

Problem 24. Find the distance between the center P of the inscribed circle and the center O of
the circumscribed circle of 4ABC in terms of the two radii r and R.

Problem 25. We are given 4ABC and points D ∈ AC and E ∈ BC such that DE||AB. A circle
k1 of diameter DB intersects a circle k2 of diameter AE in M and N . Prove that M and N lie on
the altitude CH to AB.

Problem 26. Prove that the altitude of 4ABC through C is the radical axis of the circles with
diameters the medians AM and BN of 4ABC.

Problem 27. Find the geometric place of points O which are centers of circles through the end
points of diameters of two fixed circles k1 and k2.

Problem 28. Construct all radical axes of the four incircles of 4ABC.

Problem 29. Let A,B,C be three collinear points with B inside AC. On one side of AC we
draw three semicircles k1, k2 and k3 with diameters AC, AB and BC, respectively. Let BE be
the interior tangent between k2 and k3 (E ∈ k1), and let UV be the exterior tangent to k2 and k3

(U ∈ k2 and V ∈ k3). Find the ratio of the areas of 4UV E and 4ACE in terms of k2 and k3’s
radii.(cf. Fig. 10)

Problem 30. The chord AB separates a circle γ into two parts. Circle γ1 of radius r1 is inscribed
in one of the parts and it touches AB at its midpoint C. Circle γ2 of radius r2 is also inscribed in
the same part of γ so that it touches AB, γ1 and γ. Let PQ be the interior tangent of γ1 and γ2,
with P,Q ∈ γ. Show that PQ · SE = SP · SQ, where S = γ1 ∩ γ2 and E = AB ∩ PQ.(cf. Fig. 11)

Problem 31. Let k1(O,R) be the circumscribed circle around 4ABC, and let k2(T, r) be the
inscribed circle in 4ABC. Let k3(T, r1) be a circle such that there exists a quadrilateral AB1C1D1

inscribed in k1 and circumscribed around k3. Calculate r1 in terms of R and r.
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Problem 32. Let ABCD be a square, and let l be a line such that the reflection A1 of A across l
lie on the segment BC. Let D1 be the reflection of D across l, and let D1A1 intersect DC in point
P . Finally, let k1 be the circle of radius r1 inscribed in 4A1CP1. Prove that r1 = D1P1.

Problem 33. In a circle k(O,R) let AB be a chord, and let k1 be a circle touching internally k at
point K so that KO ⊥ AB. Let a circle k2 move in the region defined by AB and not containing k1

so that it touches both AB and k. Prove that the tangent distance between k1 and k2 is constant.

Problem 34. Prove that for any two circles there exists an inversion which transforms them into
congruent circles (of the same radii). Prove further that for any three circles there exists an inversion
which transforms them into circles with collinear centers.

Problem 35. Given two nonintersecting circles k1 and k2, show that all circles orthogonal to both
of them pass through two fixed points and are tangent pairwise.

Problem 36. Given two circles k1 and k2 intersecting at points A and B, show that there exist
exactly two points in the plane through which there passes no circle orthogonal to k1 and k2.

3. Problems From Around the World

Problem 37 (IMO Proposal). The incircle of 4ABC touches BC,CA,AB at D,E, F , respec-
tively. X is a point inside 4ABC such that the incircle of 4XBC touches BC at D also, touches
CX and XB at Y and Z, respectively. Prove that EFZY is a cyclic quadrilateral.

Problem 38 (Israel, 1995). Let PQ be the diameter of semicircle H. Circle k is internally tangent
to H and tangent to PQ at C. Let A be a point on H and B a point on PQ such that AB is
perpendicular to PQ and is also tangent to k. Prove that AC bisects ∠PAB.

Problem 39 (Romania, 1997). Let ABC be a triangle, D a point on side BC, and ω the circum-
cicle of ABC. Show that the circles tangent to ω, AD, BD and to ω, AD, DC are also tangent to
each other if and only if ∠BAD = ∠CAD.

Problem 40 (Russia, 1995). We are given a semicircle with diameter AB and center O, and a
line which intersects the semicircle at C and D and line AB at M (MB < MA, MD < MC.)
Let K be the second point of intersection of the circumcircles of 4AOC and 4DOB. Prove that
∠MKO = 90◦.

4. Final Remarks on Inversion: Alternative Definition of Inversion in Terms of

Complex Numbers

The points in the usual coordinate plane P can be thought of as complex numbers: the point
A = (a, b) can be thought of as the complex number z = a + bi with a, b ∈ R. Thus, the x-
coordinate of A corresponds to the real part of z: Re(z) = a, and the y-coordinate of A corresponds
to the imaginary part of z: Im(z) = b. Recall how we add and subtract complex numbers: this
corresponds exactly to addition and subtraction of vectors originating at (0,0) in the plane. For
instance, if z1 = a1 + b1i, then z + z1 = (a + a1) + (b + b1)i; this corresponds exactly to what
would happen if we add two vectors ~v and ~v1 which start at the origin and end in (a, b) and (a1, b1),
respectively: ~v + ~v1 would start at the origin and end in (a+ a1, b+ b1) (cf. Fig. 12.)

Multiplication of complex numbers can be also translated in terms of vectors in the plane. To
multiply z and z1 from above, we perform the usual algebraic manipulations:

z · z1 = (a+ bi) · (a1 + b1i) = aa1 + ab1i+ ba1i+ bb1(i2) = (aa1 − bb1) + (ab1 + ba1)i.
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Figures 12-13

The resulting “vector” ~v′ from this multiplication corresponds to (aa1 − bb1, ab1 + ba1), and it can
be interpreted geometrically from the starting vectors ~v and ~v1. I urge you to check in a few simple
examples that ~v′ can be described as follows: add the angles that ~v and ~v1 form with the x-axis –
this is going to be direction of ~v′; for the length of ~v′, take the product of the lengths of ~v and ~v1.
(Hint: use the so-called “polar form” of vectors and some simple trigonometric identities.)

Question 1. What does this have to do with Inversion?

The function Inversion from the plane P to P , as we defined it earlier, can be viewed simply as
a complex function, i.e. a function whose input and output are complex numbers. To explain this,
we need to introduce one further notion: the conjugate of a complex number. If z = a + bi is a
complex number, then the conjugate of z, denoted by z, is simply the complex number obtained
from be z by switching the sign of z’s imaginary part: z = a− bi. Geometrically, the points (a, b)
and (a,−b) are reflections of each other across the x-axis (cf. Fig. 13.) The “miraculous” property
of conjugates is that their product is always a real number:

z · z = (a+ bi) · (a− bi) = a2 + b2 ∈ R.

Now we are ready to define Inversion in terms of complex numbers:

Lemma 3. The function Inversion I : P → P , with center O = (0, 0) and radius r = 1, can be
described alternatively by identifying the coordinate plane P with the plane of complex numbers C,
and defining the image of A = (a, b) to be the complex number:

I(A) =
1
z
,

where z = a+ bi ∈ C is the complex number corresponding to A.

In other words, Inversion sends the “point” z = a + ib to the “point”
1
z

. The latter has some
coordinates produced by the division of the numbers 1 and z. Of course, you can say – but how
can we divide two complex numbers and get a third complex complex number? Here is an example
of how this is done:

1− 3i
2 + 7i

=
(1− 3i)(2− 7i)
(2 + 7i)(2− 7i)

=
−19− 15i

4 + 49
= −19

53
− 15

53
i.

Here we multiplied the numerator and denominator of the original fraction by (2−7i), (the conjugate
of 2 + 7i), which forced the denominator to become a real number (53), and as a result we ended
up with an “ordinary” complex number.

Thus, according to the lemma, to find where Inversion sends the point A = (1, 1), we consider
the complex number z = 1 + i, and find the corresponding complex number 1/z:

1
z

=
1

1− i
=

1 + i

(1− i)(1 + i)
=

1 + i

2
=

1
2

+
1
2
i.

5



Thus, A = (1, 1) will be sent by the Inversion to the point A1 = (1
2 ,

1
2). Well, it is easy to check

that A1 will be indeed the image of A under Inversion: note that A1 lies on the segment OA, and
|OA| · |OA1| =

√
2
√

1/2 = 1. We urge the reader to prove the above lemma by using the elementary
properties of complex numbers above and the original definition of Inversion.

Question 2. How good is this new interpretation of Inversion? The original definition
seems quite alright, and besides, it does not require knowing complex numbers at all?!

Consider how many cases we have to go through in order to see what happens to circles and
lines under Inversion: 4 cases. In addition, the proof of “preservation of angles” under Inversion
requires us to look at all possible pairs of cases above, making it quite an unattractive work to
sweat over ... 10 cases! Besides, the proof in each case has little or no relevance to the other cases,
that is, we cannot find one general explanation for why angles should be preserved under Inversion!
And honestly speaking, going through all proofs in 10 cases does not really “impart on us more
wisdom”: it only produces technical explanations; we have now no better idea of why Inversion has
its wonderful properties than before we started!

In search of a better unifying explanation of why Inversion can do all the miraculous things it
does, we invoke the theory of complex functions.

Thus, we consider complex functions f : C → C, that is, functions with complex numbers as
input and output. For example, f(z) = z, f(z) = 3z2, f(z) = z, f(a+ib) = a+2abi are all complex
functions. We can also look at functions f defined not on the whole complex plane C, but just on
some nice subset of it. For example, f(z) = 1/z for z 6= 0, and f(z) = 1/z, for z 6= 0.

As with real functions (e.g. f : R → R f(x) = x2 − 4x,) we can define differentiability of
complex functions. We say that a function f : U → C, where U is an open subset of C, is complex
differentiable at z0 ∈ U if the limit

lim
h→0

f(z + h)− f(z)
h

exists. We denote this limit, as usual, by f ′(z). In order not to confuse this definition with the real
differentiability, we call a complex differentiable function f holomorphic.

So far so good, except that it is not so obvious when a complex function is holomorphic. We can
though describe a whole class of obviously holomorphic functions: these will be polynomials and
rational functions of z, e.g. f(z) = z, f(z) = z+3z2, f(z) = 1/z, but not f(z) = f(a+bi) = a+2abi.
I shall not elaborate here more on the subject, but just point out a good reference: Complex
Analysis, by Serge Lang, Springer-Verlag.

In any case, the story goes roughly as follows.

Theorem 1. Any holomorphic function preserves angles.

More precisely, given two paths in the plane (cf. Fig. 14) meeting at point A = (a, b), we assume
that the tangent lines t1 and t2 at A to both paths exist. Set α to be the angle between t1 and
t2. After applying a holomorphic function f , we transform the two paths into some other paths
f(path 1) and f(path 2), and they meet at point B = f(z0). Set α to be the angle between t1 and
t2. After applying a holomorphic function f , we transform the two paths into some other paths
f(path 1) and f(path 2), and they meet at point B = f(z0). Then, the theorem asserts that the
new paths will also have tangent lines at B, which will make precisely the same angle α with each
other. In other words, the angle between the original paths is preserved.

Now, Inversion is not quite a holomorphic function (if it were f(z) = 1/z it would have been
holomophic everywhere except for z = 0, where it is not defined anyway.) But inversion f(z) = 1/z
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Figures 14

belongs to a class of functions, called, “antiholomorphic”: roughly speaking, these are functions
“holomorphic” in the variable z, not in z. Such functions reverse the angles between paths.2 As
far as the measure of the angles is concerned, it is always preserved under both holomorphic and
antiholomorphic functions.

Thus, if the truth, only the truth and the whole truth is to be told,

Theorem 2. Inversion in the plane reverses the angles between any two figures (paths) (as long
as we can define such angles.)

Problem 41. Use the formula f(z) = r2/z to describe directly the images of circles and lines
passing through (or not through) the center of inversion.

5. Hints and Solutions to Selected Problems in Part I and Part II

Note: If a radius of an inversion is not specified, then assume that it is arbitrary.

Hint 1-2. I(A, r).

Hint 3. If r1 ≤ r2 ≤ r3, reduce to #1 or #2 by replacing k1 by its center, k2 by k′2(O2, r2 − r1),
and k3 by k′3(O2, r3 − r1).

Hint 4. If K,S,Q are the centers if k, s, q, respectively, then the wanted geometric place is the
incircle of 4KSQ: use I(A, r).

Hint 5. Ist way: I(A, r); IInd way: if k2 and k4 do not intersect, invert them into concentric circles
(cf. Fig. 15-17); IIIrd way: forget about inversion, and notice that O1O2O3O4 is circumscribed
around a circle.

Hint 6. I(A1, r).

Solution 7. Using I(D, r), we have A1, B1, C1 collinear and A1B1 +B1C1 = A1C1. Then

AB · r2

DA ·DB
+

BC · r2

DB ·DC
=

AC · r2

DA ·DC
⇒ AB ·DC +AD ·BC = AC ·BD.

Hint 8. I(P, r).

2Another way to see why Inversion reverses angles is to view Inversion as the composition of two functions:
f1(z) = 1/z for z 6= 0, and the reflection along the x-axis, f2(z) = z: thus, I(z) = f2 ◦ f1. Since f1 preserves angles
(it is holomorphic), and f2 reverses angles (simple geometric verification), it follows that their composition I will
reverse angles.
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Fig. 15-17

Hint 9. If k1∩k2 = ∅, let I(O, r) send them into concentric circles. Consider the cases when I(k3)
is a circle, and when it is a line.

Hint 10-11. I(P, r).

Hint 12. Describe circles k and k1 around the squares, and use inscribed angles to show that the
point in question is the intersection point of k and k1, other than D.

Hint 13. I(D, r), then A1B1 = C1B1.

Hint 14. I(D, r), then ∠A1B1C1 = β in 4A1B1C1.

Solution 15. Apply I(A, r) (cf. Fig.18-19.) Then AD1B1C1 is a parallelogram, and E1 ∈ AB→1 .
But AE1 ·AE = r2 = AB1 ·AB, and AE = 2AB. Hence AE1 = AB1/2, and E1 is the midpoint of
AB1, i.e. AB1 ∩D1C1 = {E}. Since D1, E1, C1 are collinear, then D,E,C,A are concyclic.

Fig. 18-19

Solution 16. Apply I(O, r), and let 4ABC I→4A1B1C1 (cf. Fig.20.) If ∠AOB = γ, ∠OA1B1 =
α, and ∠OB1A1 = β, then

OA+OB

OC
=
OC1

OA1
+
OC1

OB1
=

sinα
sin(α+ γ/2)

+
sinβ

sin(α+ γ/2)
= 2cos

γ

2
.

Hint 17. Let I(O, r) send k and k∗ into concentric circles.

Solution 22. Apply I(O,OP ) (cf. Fig.21.) Then I(k) = l, so that I(T ) = T1 and I(S) = S1

are the given points on l. Let kq(Q,QS = QT ), and let X be the center of I(kq). We know that
X ∈ OQ→. But since kq ⊥ k, then I(kq) ⊥ l, i.e. l passes through the center X. Thus, X = Q1,
and XT1 = XS1 implies that Q1 is the midpoint of T1S1.
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Fig. 20-21

Solution 18. We refer to Fig.22-23 for notation. Let k3 ∩ l = {B}, and let the radius R be chosen
so that the circle k0(B,R) ⊥ k. Apply I(B,R). Then I(k) = k(O, 1), I(l) = l, I(k3) = k′3 is a
line parallel to l, and I(k1) = k′1(O′, R′) and I(k2) = k′2 are both circles, touching l and k′3, and
hence, of the same radii R′. If A′ is their point of tangency, from 4O′AO: (R′)2 + ((R′)2 − 1)2 =
((R′)2 + 1)2 ⇒ R′ = 4. The wanted distance is 2R′ − 1 = 7.

Fig. 22-23

Solution 24. Let A0, B0, C0 be the points of tangency of the inscribed circle kP (P, r) with
BC,CA,AB, respectively (cf. Fig.24.) Let A1, B1, C1 be the midpoints of the corresponding
sides of 4A0B0C0. Note that A1 = PA∩C0B0, and similarly for B1 and C1. Apply I(P, r). Since
PA ⊥ C0B0, it follows I(A) = A1, and similarly, I(B) = B1, I(C) = C1. Thus, the circumscribed
circle k(O,R) goes under I to the circumscribed circle around 4A1B1C1, k1(O1, r1). Note that k1

is half the size of kP , hence r1 = r/2.

Fig. 24-25
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This is enough to find the distance between O and P . More generally, the distance d between
the center O of a circle and the center P of an inversion satisfies:

r1 · |d2 −R2| = r2 ·R,(2)

where r is the radius of the inversion, R is the original radius of the circle, and r1 is the radius of
the image circle. Indeed, (cf. Fig.25,) for the diametrically opposite points S, T ∈ PO ∩ k, and for
their images S1, T1 ∈ PO ∩ k1 we have:

S1T1 =
ST · r2

PS · PT
⇒ 2r1 =

2R · r2

|d−R|(d+R)
,

from where (2) follows. Substituting r1 = r/2, and the obvious relation R > d, we get d =√
R(R− 2r). Note that for d = 0 we have an equilateral 4ABC, and R = 2r.

Solution 25. Let A1 and B1 be the orthogonal projections of A and B onto BC and AC, and
let k3 be the circle through A,B,A1, B1 (cf. Fig. 26.) The radical axis of k1 and k2 is MN , the
radical axis of k1 and k3 is AA1, and the radical axis of k2 and k3 is BB1. Hence they all intersect
in one point H, the orthocenter of 4ABC. Thus, H ∈ CC1 ∩MN .

Let O1 and O2 be the centers of k1 and k2, or equivalently, the midpoints of BD and AE. Since
DE||AB, then O1O2||AB. But MN ⊥ O1O2, so MN ⊥ AB, i.e. MN ||CC1. Since the last two
intersect in point H, it follows that they coincide as lines.

Fig. 26-27

Hint 26. Set D ≡ E ≡ C in #25.

Hint 27. Consider the radical axis of the two circles and its reflection across the perpendicular
bisector of O1O2 (cf. Fig.27.)

Hint 28. Consider the intersection of a radical axis of two of the circles with a tangent to these
two circles.

Hint 29. I(E, r = EB) and show that U lies on line AE, and V lies on line EC. ALternatively,
find a non-inversive proof that BV EU is a rectangle.

Hint 30. I(S, r).
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