Inversion in the Plane. Part I
Zvezdelina Stankova-Frenkel
UC Berkeley

Note: All objects lie in the plane, unless otherwise specified. The expression “object A touches object B” refers to tangent objects, e.g. lines and circles.

1. Definition of Inversion in the Plane

Definition 1. Let $k(O,r)$ be a circle with center O and radius r. Consider a function on the plane, $I : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, sending a point $X \neq O$ to the point on the half line OX, X_1, defined by

$$OX \cdot OX_1 = r^2.$$

Such a function I is called an *inversion of the plane* with center O and radius r (write $I(O,r)$.)

Figures 1-2.

It is immediate that I is *not* defined at p,O. But if we compactify \mathbb{R}^2 to a sphere by adding one extra point O_∞, we could define $I(O) = O_\infty$ and $I(O_\infty) = O$.

An inversion of the plane can be equivalently described as follows (cf. Fig.1.) If $X \in k$, then $I(X) = X$. If X lies outside k, draw a tangent from X to k and let X_2 be the point of tangency. Drop a perpendicular X_2X_1 towards the segment OX with $X_1 \in OX$, and set $I(X) = X_1$. The case when X is inside k, $X \neq O$, is treated in a reverse manner: erect a perpendicular XX_2 to OX, with $X_2 \in k$, draw the tangent to k at point X_2 and let X_1 be the intersection of this tangent with the line OX; we set $I(X) = X_1$.
2. Properties of Inversion

Some of the basic properties of a plane inversion $I(O, r)$ are summarized below:

- I^2 is the identity on the plane.
- If $A \neq B$, and $I(A) = A_1, I(B) = B_1$, then $\triangle OAB \sim \triangle OB_1A_1$ (cf. Fig. 2.) Consequently,
 \[A_1B_1 = \frac{AB \cdot r^2}{OA \cdot OB}. \]
- If l is a line with $O \in l$, then $I(l) = l$.
- If l is a line with $O \notin l$, then $I(l)$ is a circle k_1 with diameter OM_1, where $M_1 = I(M)$ for the orthogonal projection M of O onto l (cf. Fig.3.)

Consequently,
 \[A_1B_1 = \frac{AB \cdot r^2}{OA \cdot OB}. \]

3. Problems

Problem 1. Given a point A and two circles k_1 and k_2, construct a third circle k_3 so that k_3 passes through A and is tangent to k_1 and k_2. (cf. Fig.5)

Problem 2. Given two points A and B and a circle k_1, construct another circle k_2 so that k_2 passes through A and is tangent to k_1. (cf. Fig.6)

Problem 3. Given circles k_1, k_2 and k_3, construct another circle k which tangent to all three of them.
Problem 4. Let k be a circle, and let A and B be points on k. Let s and q be any two circles tangent to k at A and B, respectively, and tangent to each other at M. Find the set traversed by the point M as s and q move in the plane and still satisfy the above conditions. (cf. Fig.7)

Problem 5. Circles k_1, k_2, k_3 and k_4 are positioned in such a way that k_1 is tangent to k_2 at point A, k_2 is tangent to k_3 at point B, k_3 is tangent to k_4 at point C, and k_4 is tangent to k_1 at point D. Show that A, B, C and D are either collinear or concyclic. (cf. Fig.8)

Problem 6. Circles k_1, k_2, k_3 and k_4 intersect cyclicly pairwise in points $\{A_1, A_2\}$, $\{B_1, B_2\}$, $\{C_1, C_2\}$, and $\{D_1, D_2\}$. (k_1 and k_2 intersect in A_1 and A_2, k_2 and k_3 intersect in B_1 and B_2, etc.) (cf. Fig.9)

- Prove that if A_1, B_1, C_1, D_1 are collinear (concyclic), then A_2, B_2, C_2, D_2 are also collinear (concyclic).
- Prove that if A_1, A_2, C_1, C_2 are concyclic, then B_1, B_2, D_1, D_2 are also concyclic.

Problem 7. [Ptolemy’s Theorem] Let $ABCD$ be inscribed in a circle k. (cf. Fig.10) Prove that the sum of the products of the opposite sides equals the product of the diagonals of $ABCD$:

$$AB \cdot DC + AD \cdot BC = AC \cdot BD.$$

Further, prove that for any four points A, B, C, D:

$$AB \cdot DC + AD \cdot BC \geq AC \cdot BD.$$

When is equality achieved?

Problem 8. Let k_1 and k_2 be two circles, and let P be a point. Construct a circle k_0 through P so that $\angle(k_1, k_0) = \alpha$ and $\angle(k_1, k_0) = \beta$ for some given angles $\alpha, \beta \in [0, \pi)$.

Figures 8-10.
Problem 9. Given three angles $\alpha_1, \alpha_2, \alpha_3 \in [0, \pi)$ and three circles k_1, k_2, k_3, two of which do not intersect, construct a fourth circle k so that $\angle(k, k_i) = \alpha_i$ for $i = 1, 2, 3$.

Problem 10. Construct a circle k^* so that it goes through a given point P, touches a given line l, and intersects a given circle k at a right angle.

Problem 11. Construct a circle k which goes through a point P, and intersects given circles k_1 and k_2 at angles 45° and 60°, respectively.

Problem 12. Let $ABCD$ and $A_1B_1C_1D_1$ be two squares oriented in the same direction. Prove that AA_1, BB_1 and CC_1 are concurrent if $D \equiv D_1$.

Problem 13. Let $ABCD$ be a quadrilateral, and let k_1, k_2, and k_3 be the circles circumscribed around $\triangle DAC$, $\triangle DCB$, and $\triangle DBA$, respectively. Prove that if $AB \cdot CD = AD \cdot BC$, then k_2 and k_3 intersect k_1 at the same angle.

Problem 14. In the quadrilateral $ABCD$, set $\angle A + \angle C = \beta$.

- If $\beta = 90^\circ$, prove that that $(AB \cdot CD)^2 + (BC \cdot AD)^2 = (AC \cdot BD)^2$.
- If $\beta = 60^\circ$, prove that $(AB \cdot CD)^2 + (BC \cdot AD)^2 = (AC \cdot BD)^2 + AB \cdot BC \cdot CD \cdot DA$.

Problem 15. Let k_1 and k_2 be two circles intersecting at A and B. Let t_1 and t_2 be the tangents to k_1 and k_2 at point A, and let $t_1 \cap k_2 = \{A, C\}$, $t_2 \cap k_1 = \{A, D\}$. If $E \in AB^\perp$ such that $AE = 2AB$, prove that $ACED$ is concyclic. (cf. Fig.11)

Problem 16. Let OL be the inner bisector of $\angle POQ$. A circle k passes through O and $k \cap OP^\perp = \{A\}$, $k \cap OQ^\perp = \{B\}$, $k \cap OL^\perp = \{C\}$. (cf. Fig.12) Prove that, as k changes, the following ratio remains constant:

$$\frac{OA + OB}{OC}$$

Problem 17. Let a circle k^* be inside a circle k, $k^* \cap k = \emptyset$. We know that there exists a sequence of circles $k_0, k_1, ..., k_n$ such that k_i touches k, k^* and k_{i-1} for $i = 1, 2, ..., n + 1$ (here $k_{n+1} = k_0$.) Show that, instead of k_1, one can start with any circle k'_1 tangent to both k and k^*, and still be able to fit a “ring” of n circles as above. What is n in terms of the radii of and the distance between the centers of k and k^*? (cf. Fig. 13)

Problem 18. Circles k_1, k_2, k_3 touch pairwise, and all touch a line l. A fourth circle k touches k_1, k_2, k_3, so that $k \cap l = \emptyset$. Find the distance from the center of k to l given that radius of k is 1. (cf. Fig. 14)