
INFINITY: CARDINAL NUMBERS

BJORN POONEN

1. Some terminology of set theory

N := {0, 1, 2, 3, . . . }
Z := {. . . ,−2,−1, 0, 1, 2, . . . }
Q := the set of rational numbers

R := the set of real numbers

C := the set of complex numbers

(Some authors prefer not to include 0 in N, but including 0 is more natural for many purposes;
for example, then N is exactly the set of possibilities for the size of a finite set. Other authors
avoid the issue entirely by using Z>0 to denote the set of positive integers and Z≥0 to denote
the set of nonnegative integers.)

Let f : X → Y be a function from a set X to a set Y . Then

f is injective (one-to-one) ⇐⇒ f(x1) 6= f(x2) whenever x1 6= x2.

f is surjective (onto) ⇐⇒ for every y ∈ Y there exists x ∈ X such that f(x) = y.

f is bijective ⇐⇒ f is both injective and surjective

In the last case, one also says that f is a bijection (one-to-one correspondence); then f pairs
the elements of X with the elements of Y in such a way that no elements of either set are
left unpaired.

2. Cardinal numbers

We already know how to measure the size (synonym: cardinality) of a finite set. For
example, #{3, 4, 5, 6} = 4, #∅ = 0, and #{a, {b, c}} = 2. For centuries, people believed
that there was no meaningful way to compare the sizes of infinite sets, but in the late 1800’s
Cantor developed a system for doing exactly this.

In his system, every set S has a cardinality #S (alternative notation: |S|). If S is finite,
then #S is an ordinary nonnegative integer, as above. But if S is infinite, then #S is a new
kind of “number,” called a cardinal number or simply a cardinal. New symbols are needed:
for instance, the cardinal numbers ℵ0 (pronounced aleph-zero, aleph-nought, or aleph-null)
and c (the “cardinality of the continuum”) are defined by

ℵ0 := #N,

c := #R.
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3. Equality of cardinal numbers

We do not introduce a different symbol for every individual set, because sometimes two
different sets can have the same size. For instance, two finite sets have the same size if
and only if one set can be obtained from the other by relabeling the elements; for instance,
{1, 2, 3} has the same cardinality as {a, b, c}. One of the fundamental properties of Cantor’s
cardinal numbers is that the same should hold for arbitrary sets, finite or not. This can be
reworded as follows:

RULE 1: #S = #T ⇐⇒ there exists a bijection f : S → T .

For instance, if S = {0,−1,−2,−3, . . . }, then #N = #S because there is a bijection
N→ S sending each nonnegative integer n to −n:

0←→ 0

1←→ −1

2←→ −2

3←→ −3

...

4. Comparing cardinal numbers

RULE 2: #S ≤ #T ⇐⇒ there exists an injection f : S → T .

Loosely speaking, S is smaller or equal in size to T if and only if one can match the elements
of S with elements of T so that all elements of S get used (but maybe some elements of T
are left over). For example, there is an injection {a, b, c} → N sending a to 1, b to 2, and c
to 17; this proves that 3 ≤ ℵ0. As a special case of Rule 2, if S ⊆ T , then #S ≤ #T .

The relations = and ≤ for cardinals satisfy the same properties as they do for ordinary
numbers:

1. #S = #S for any set S (reflexivity).
2. If #S = #T , then #T = #S (symmetry).
3. If #S = #T and #T = #U , then #S = #U (transitivity).
4. If #S = #T , then #S ≤ #T .
5. If #S ≤ #T and #T ≤ #U , then #S ≤ #U (transitivity).
6. For any two sets S and T , either #S ≤ #T or #T ≤ #S.
7. If #S ≤ #T and #T ≤ #S, then #S = #T .

The last two are fairly difficult to deduce from the definitions. The last one is called the
Schröder-Bernstein Theorem; it says that if there exist injections S → T and T → S, then
there exists a bijection S → T . (This appeared as a problem on one of the monthly contests.)

The other relations like ≥, <, and > can be defined in terms of = and ≤. For instance,
“#S > #T” means “#T ≤ #S is true and #S = #T is false.”

5. An unfortunate situation

If S and T are finite sets, and S is a proper subset of T (this means that S ⊆ T but
S 6= T ), then #S < #T . Unfortunately, this is no longer true when we consider infinite sets!
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For example, if S = {3, 4, 5, 6, . . . }, then S is a proper subset of N, but according to the
definition, #S = #N, because there is a bijection from S to N:

3←→ 0

4←→ 1

5←→ 2

6←→ 3

...

Moreover, this unfortunate situation is unavoidable if we want to keep Rules 1 and 2 (and
we do). We just have to live with it.

6. The cardinality of Z

Suppose we want to check whether the set Z of integers has the same cardinality as N.
If we try to set up a bijection from N to Z without thinking, we fail because the negative
numbers are not used:

0←→ 0

1←→ 1

2←→ 2

3←→ 3

...

− 1,−2,−3, . . . are not used.

This is only an injection. Does this mean that #N 6= #Z? No! Even though this function
did not give a bijection, it is easy to construct other functions N → Z that are bijections,
like

0←→ 0

1←→ 1

2←→ −1

3←→ 2

4←→ −2

5←→ 3

6←→ −3

...

Thus #Z = #N = ℵ0, even though N is a proper subset of Z. (This is similar to the situation
in the previous section.)

7. Countable sets

We next show that there is no infinite set strictly smaller than N.

Proposition 1. If #S ≤ ℵ0, then either S is finite or #S = ℵ0.
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Proof. Start listing distinct elements of S:

s0, s1, s2, s3, . . .

If at some point we run out of elements, then S is finite. Otherwise we have constructed an
injection N → S sending n to sn for each n ∈ N, so ℵ0 = #N ≤ #S. But #S ≤ ℵ0 was
given, so in this case, #S = ℵ0.

A set S is called countable if #S ≤ ℵ0, and S is called countably infinite if #S = ℵ0.
According to our definition (which not all people agree on), finite sets like {1, 2, 3} and ∅
also are considered to be countable.

The following is an extremely useful tool for calculating cardinalities.

Theorem 2 (Typewriter Principle). Let S be a set. If there is a way to label each element
of S with a finite string of typewriter symbols (like fYe*4^!!!@) so that no two elements of
S are given the same label, then S is countable; i.e., #S ≤ ℵ0. If moreover S is infinite,
then #S = ℵ0.

Proof. Let T be the set of all finite strings of typewriter symbols. There are fewer than 900
typewriter characters, so we may assign each a three-digit code not beginning with 0. For
instance, we might assign

a 7→ 100

b 7→ 101

% 7→ 486

...

Let strings of characters be mapped to the concatenation of the character codes; for instance,
ba% would map to 101100486 ∈ N. This gives an injection T → N, so #T ≤ #N = ℵ0. The
labelling of S gives an injection S → T , so #S ≤ #T ≤ ℵ0. The final statement follows
from Proposition 1.

Proposition 3. #Q = ℵ0.

Proof. Each rational number can be labelled with a string of typewriter symbols representing
it like -75/89, and Q is infinite, so the Typewriter Principle shows that #Q = ℵ0.

An algebraic number is a complex number that is a zero of some nonzero polynomial with
rational coefficients. A transcendental number is a complex number that is not algebraic.
The set of algebraic numbers is denoted by Q. For instance,

√
2 ∈ Q, since

√
2 is a zero

of x2 − 2. On the other hand, it is true (but very difficult to prove) that π and e are
transcendental.

Proposition 4. #Q = ℵ0.

Proof. We can describe −i
√

2 as

the complex zero of x^2+2 closest to -1.4i

Similarly, each a ∈ Q can be singled out by a finite string of typewriter symbols giving a
polynomial with rational coefficients of which it is a zero, together with an approximate
description of its location to distinguish it from the other zeros of that polynomial. By the
Typewriter Principle, #Q = ℵ0.
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8. Arithmetic of cardinal numbers

Suppose S = {1, 2} and T = {1, 2, 3}. Relabelling the elements of T yields a set T ′ =
{a, b, c} of the same cardinality, but which is disjoint from T . Then 2 + 3 = #S + #T =
#(S ∪ T ′) = #{1, 2, a, b, c} = 5. This observation lets one add cardinal numbers in general:
if S and T are arbitrary sets then the sum of the cardinal numbers #S and #T is defined
to be the cardinality of S ∪ T ′ where T ′ is obtained from T by relabeling elements so that
S ∩ T ′ = ∅. For example, in the disjoint union

{0, 2, 4, 6, . . . } ∪ {1, 3, 5, 7, . . . } = N,

all three sets are of cardinality ℵ0, so

ℵ0 + ℵ0 = ℵ0.

The Cartesian product S×T of two sets S and T is the set of all ordered pairs (s, t) where
s ∈ S and t ∈ T . For example, if S = {1, 2} and T = {a, b, c}, then

S × T = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

so #(S × T ) = 6 = 2 · 3. If S and T are arbitrary sets, then the product of the cardinal
numbers #S and #T is defined to be #(S × T ). For instance, the elements of N × N can
be described by strings of typewriter symbols like (5,7), so the Typewriter Principle shows
that #(N× N) = ℵ0. Therefore

ℵ0 · ℵ0 = ℵ0.

These equalities may look strange, but in fact, such behavior is typical: one can prove that
if ℵ and ℵ′ are cardinal numbers such that ℵ ≤ ℵ′ and ℵ′ is infinite, then ℵ+ℵ′ = ℵ·ℵ′ = ℵ′.

There is no nice way of subtracting or dividing cardinal numbers. But one can exponen-
tiate. If S and T are arbitrary sets, let ST denote the set of functions from T to S. Note
the reversal of order! Then (#S)(#T ) is defined to be the cardinality of ST . For example, if
S = N and T = {1, 2, 3}, then a sample element of ST might be described by

the function {1,2,3}->N sending 1 to 12, 2 to 753, and 3 to 489.

The Typewriter Principle shows that #(ST ) = ℵ0. Hence (ℵ0)
3 = ℵ0.

9. The power set

The power set P(S) of a set S is the set of all its subsets. For instance, if S = {1, 2, 3},
then

P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},

so #P(S) = 8.
For any set S, there is a bijection between P(S) and the set {0, 1}S of functions χ : S →

{0, 1} that maps the subset T of S to its characteristic function

χT (s) :=

{
1, if s ∈ T
0, if s 6∈ T

.

Therefore #P(S) = #
(
{0, 1}S

)
= 2#S.
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10. Cantor’s diagonal argument

Now consider the special case S = N. For convenience of notation, we may represent a
function f : N→ {0, 1} by a sequence of binary digits. For example, 1011101 · · · corresponds
to the function f such that f(0) = 1, f(1) = 0, f(2) = 1, f(3) = 1, f(4) = 1, f(5) = 0,
f(6) = 1, and so on.

Lemma 5. There is no bijection between N and the set {0, 1}N of functions f : N→ {0, 1}.

Proof. The proof is by contradiction. Suppose, there is such a bijection, such as

0 −→the function represented by 1011101 · · ·
1 −→the function represented by 0011010 · · ·
2 −→the function represented by 1100011 · · ·
3 −→the function represented by 0011111 · · ·
4 −→the function represented by 1110101 · · ·
5 −→the function represented by 1000010 · · ·
6 −→the function represented by 1010110 · · ·

...

Then

the function represented by 0110001 · · · ,

where the final sequence has been obtained by complementing the binary digits of the (high-
lighted) diagonal sequence, will not be in the list, since that last sequence differs from each
sequence in the list at least in the highlighted digit. This contradicts the assumption that
the mapping was a bijection.

Theorem 6. ℵ0 < 2ℵ0.

Proof. There exists an injection N→ {0, 1}N, for instance

0 −→the function represented by 1000000 · · ·
1 −→the function represented by 0100000 · · ·
2 −→the function represented by 0010000 · · ·
3 −→the function represented by 0001000 · · ·
4 −→the function represented by 0000100 · · ·
5 −→the function represented by 0000010 · · ·
6 −→the function represented by 0000001 · · ·

...

so #N ≤ #{0, 1}N; in other words ℵ0 ≤ 2ℵ0 . But Lemma 5 shows that #N 6= #{0, 1}N, so
ℵ0 6= 2ℵ0 . Combining these shows that ℵ0 < 2ℵ0 .

A similar proof shows that ℵ < 2ℵ for every cardinal number ℵ. In other words, the power
set P(S) of a set S is always strictly bigger than S.



INFINITY: CARDINAL NUMBERS 7

11. The cardinality of R

We already gave a name to #R, namely c, but in fact, this was unnecessary, since we’ll
soon see that #R = 2ℵ0 .

Theorem 7 (Typewriter Principle II). Let S be a set. If there is a way to label each ele-
ment of S with an infinite sequence of typewriter symbols (like a!b!c#d&· · · ) so that no two
elements of S are given the same label, then #S ≤ 2ℵ0.

Proof. Assign each typewriter symbol a code of exactly 10 binary digits. Concatenating
the codes in an infinite sequence of typewriter symbols yields an infinite sequence of binary
digits. If we map each element of S to the corresponding binary digit sequence, we get an
injection S → {0, 1}N. Hence #S ≤ #{0, 1}N = 2ℵ0 .

Theorem 8. We have #R = 2ℵ0; in other words, c = 2ℵ0.

Proof. Any real number can be labelled by its decimal expansion, which is an infinite sequence
of typewriter symbols like

−386.589734957938798379579057 . . .

so Typewriter Principle II implies that #R ≤ 2ℵ0 . On the other hand there is an injection
{0, 1}N → R sending each infinite sequence of 0’s and 1’s to the corresponding real number
having those as the digits past the decimal point; for instance

1011101110 . . . −→ .1011101110 . . . .

This injection shows that #{0, 1}N ≤ #R; i.e., 2ℵ0 ≤ #R. Combining these shows that
#R = 2ℵ0 .

We showed earlier that the set Q of algebraic numbers had size only ℵ0, so the same is
true for the real algebraic numbers. But ℵ0 < 2ℵ0 = #R, so this shows that at least some
real numbers are transcendental!

12. The continuum hypothesis

We showed in Proposition 1 that ℵ0 is the smallest infinite cardinal. It can be shown that
there a next smallest cardinal called ℵ1; i.e., the only cardinals strictly smaller than ℵ1 are
the finite ones and ℵ0. Next come ℵ2, ℵ3, . . . . Where does c = 2ℵ0 = #R fit into this list, if
anywhere? (A priori, it could be bigger than ℵn for every n ∈ N.) We know that 2ℵ0 ≥ ℵ1,
because we proved that 2ℵ0 > ℵ0. Cantor conjectured
Continuum Hypothesis: 2ℵ0 = ℵ1.
In other words, he believed that there is no set whose cardinality is strictly between that of
N and that of R.

In 1940 Gödel proved that the continuum hypothesis cannot be disproved from the other
axioms of set theory. But in 1963 Cohen showed that it could not be proved from these
axioms either!

The role of the continuum hypothesis in set theory is similar to the role of the parallel
postulate in plane geometry. The parallel postulate (that given a line L and a point P not
on L, there exists a unique line L′ through P that does not intersect L) cannot be disproved
from the other axioms of plane geometry, because it is actually true for the euclidean model
of geometry. On the other hand, the parallel postulate cannot be proved either, since it
is false in various noneuclidean models of geometry which do satisfy all the other axioms.
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Therefore the parallel postulate, or its negation, may be taken as a new axiom. Which one
you choose will depend on your vision of what geometry is supposed to be.

Similarly, whether you choose to accept the continuum hypothesis will depend on your
idea of what a set is supposed to be.

13. Problems

There are a lot of problems here. Just do the ones that interest you.

1. Each of the following sets has cardinality equal to ℵ0, 2ℵ0 , or 22ℵ0 . Determine which,
in each case, and prove it.
(a) {0, 1, 4, 9, 16, . . . }
(b) Z[x] (the set of polynomials with integer coefficients)
(c) Q[x] (the set of polynomials with rational coefficients)
(d) R[x] (the set of polynomials with real coefficients)
(e) C

(f) The interval [0, 1] of real numbers between 0 and 1 inclusive.
(g) The set of irrational real numbers.
(h) The set of transcendental real numbers.
(i) Z[i] := {a+ bi : a, b ∈ Z} (the set of Gaussian integers)
(j) The set of points in the plane.
(k) The set of lines in the plane.
(l) The set of functions from N to N.

(m) The set of bijections from N to N.
(n) The set of functions from N to R.
(o) The set of functions from R to N.
(p) The set of functions from R to R.

2. Prove properties 1 through 5 of cardinal numbers listed in Section 4 using only Rules
1 and 2.

3. Let S and T be sets. Prove that if there exists a surjective function f : S → T , then
#T ≤ #S.

4. Explain why our definition of (#S)(#T ) agrees with the usual definition for natural
numbers when S and T are finite sets.

5. Show that ℵℵ00 = 2ℵ0 .
6. Show that #P(S) > #S for any set S. (Hint: try to rephrase Cantor’s diagonal

argument purely in terms of set membership, without reference to sequences.)
7. Show that (α + β)γ = αγ + βγ for any three cardinal numbers α, β, and γ.
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