
LINEAR RECURSIVE SEQUENCES

BJORN POONEN

1. Sequences

A sequence is an infinite list of numbers, like

1, 2, 4, 8, 16, 32, . . . .(1)

The numbers in the sequence are called its terms. The general form of a sequence is

a1, a2, a3, . . .

where an is the n-th term of the sequence. In the example (1) above, a1 = 1, a2 = 2, a3 = 4,
and so on.

The notations {an} or {an}∞n=1 are abbreviations for

a1, a2, a3, . . . .

Occasionally the indexing of the terms will start with something other than 1. For example,
{an}∞n=0 would mean

a0, a1, a2, . . . .

(In this case an would be the (n+ 1)-st term.)
For some sequences, it is possible to give an explicit formula for an: this means that an is

expressed as a function of n. For instance, the sequence (1) above can be described by the
explicit formula an = 2n−1.

2. Recursive definitions

An alternative way to describe a sequence is to list a few terms and to give a rule for
computing the rest of the sequence. Our example (1) above can be described by the starting
value a1 = 1 and the rule an+1 = 2an for integers n ≥ 1. Starting from a1 = 1, the rule
implies that

a2 = 2a1 = 2(1) = 2

a3 = 2a2 = 2(2) = 4

a4 = 2a3 = 2(4) = 8,

and so on; each term in the sequence can be computed recursively in terms of the terms
previously computed. A rule such as this giving the next term in terms of earlier terms is
also called a recurrence relation (or simply recurrence).
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3. Linear recursive sequences

A sequence {an} is said to satisfy the linear recurrence with coefficients ck, ck−1, . . . , c0 if

ckan+k + ck−1an+k−1 + · · ·+ c1an+1 + c0an = 0(2)

holds for all integers n for which this makes sense. (If the sequence starts with a1, then this
means for n ≥ 1.) The integer k is called the order of the linear recurrence.

A linear recursive sequence is a sequence of numbers a1, a2, a3, . . . satisfying some linear
recurrence as above with ck 6= 0 and c0 6= 0. For example, the sequence (1) satisfies

an+1 − 2an = 0

for all integers n ≥ 1, so it is a linear recursive sequence satisfying a recurrence of order 1,
with c1 = 1 and c0 = −2.

Requiring ck 6= 0 guarantees that the linear recurrence can be used to express an+k as a
linear combination of earlier terms:

an+k = −ck−1

ck
an+k−1 − · · · −

c1
ck
an+1 −

c0
ck
an.

The requirement c0 6= 0 lets one express an as a linear combination of later terms:

an = −ck
c0
an+k −

ck−1

c0
an+k−1 − · · · −

c1
c0
an+1.

This lets one define a0, a−1, and so on, to obtain a doubly infinite sequence

. . . , a−2, a−1, a0, a1, a2, . . .

that now satisfies the same linear recurrence for all integers n, positive or negative.

4. Characteristic polynomials

The characteristic polynomial of a linear recurrence

ckan+k + ck−1an+k−1 + · · ·+ c1an+1 + c0an = 0

is defined to be the polynomial

ckx
k + ck−1x

k−1 + · · ·+ c1x+ c0.

For example, the characteristic polynomial of the recurrence an+1 − 2an = 0 satisfied by the
sequence (1) is x− 2.

Here is another example: the famous Fibonacci sequence

{Fn}∞n=0 = 0, 1, 1, 2, 3, 5, 8, 13, . . .

which can be described by the starting values F0 = 0, F1 = 1 and the recurrence relation

Fn = Fn−1 + Fn−2 for all n ≥ 2.(3)

To find the characteristic polynomial, we first need to rewrite the recurrence relation in
the form (2). The relation (3) is equivalent to

Fn+2 = Fn+1 + Fn for all n ≥ 0.(4)

Rewriting it as

Fn+2 − Fn+1 − Fn = 0(5)

shows that {Fn} is a linear recursive sequence satisfying a recurrence of order 2, with c2 = 1,
c1 = −1, and c0 = −1. The characteristic polynomial is x2 − x− 1.
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5. Ideals and minimal characteristic polynomials

The same sequence can satisfy many different linear recurrences. For example, doubling (5)
shows the Fibonacci sequence also satisfies

2Fn+2 − 2Fn+1 − 2Fn = 0,

which is a linear recurrence with characteristic polynomial 2x2 − 2x− 2. It also satisfies

Fn+3 − Fn+2 − Fn+1 = 0,

and adding these two relations, we find that {Fn} also satisfies

Fn+3 + Fn+2 − 3Fn+1 − 2Fn = 0

which has characteristic polynomial x3 + x2 − 3x− 2 = (x+ 2)(x2 − x− 1).
Now consider an arbitrary sequence {an}. Let I be the set of characteristic polynomials

of all linear recurrences satisfied by {an}. Then

(a) If f(x) ∈ I and g(x) ∈ I then f(x) + g(x) ∈ I.
(b) If f(x) ∈ I and h(x) is any polynomial, then h(x)f(x) ∈ I.

In general, a nonempty set I of polynomials satisfying (a) and (b) is called an ideal.

Fact from algebra: Let I be an ideal of polynomials. Then either I = {0} or else there is
a unique monic polynomial f(x) ∈ I such that

I = the set of polynomial multiples of f(x) = {h(x)f(x) | h(x) is a polynomial }.
(A polynomial is monic if the coefficient of the highest power of x is 1.)

This fact, applied to the ideal of characteristic polynomials of a linear recursive sequence
{an} shows that there is always a minimal characteristic polynomial f(x), which is the monic
polynomial of lowest degree in I. It is the characteristic polynomial of the lowest order non-
trivial linear recurrence satisfied by {an}. The characteristic polynomial of any other linear
recurrence satisfied by {an} is a polynomial multiple of f(x).

The order of a linear recursive sequence {an} is defined to be the lowest order among all
(nontrivial) linear recurrences satisfied by {an}. The order also equals the degree of the
minimal characteristic polynomial. For example, as we showed above, {Fn} satisfies

Fn+3 + Fn+2 − 3Fn+1 − 2Fn = 0,

but we also know that

Fn+2 − Fn+1 − Fn = 0,

and it is easy to show that {Fn} cannot satisfy a linear recurrence of order less than 2,
so {Fn} is a linear recursive sequence of order 2, with minimal characteristic polynomial
x2 − x− 1.

6. The main theorem

Theorem 1. Let f(x) = ckx
k + · · · + c0 be a polynomial with ck 6= 0 and c0 6= 0. Factor

f(x) over the complex numbers as

f(x) = ck(x− r1)m1(x− r2)m2 · · · (x− r`)
m` ,
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where r1, r2, . . . , r` are distinct nonzero complex numbers, and m1,m2, . . . ,m` are positive
integers. Then a sequence {an} satisfies the linear recurrence with characteristic polynomial
f(x) if and only if there exist polynomials g1(n), g2(n), . . . , g`(n) with deg gi ≤ mi − 1 for
i = 1, 2, . . . , ` such that

an = g1(n)rn
1 + · · ·+ g`(n)rn

` for all n.

Here is an important special case.

Corollary 2. Suppose in addition that f(x) has no repeated factors; in other words suppose
that m1 = m2 = · · · = m` = 1. Then f(x) = ck(x− r1)(x− r2) · · · (x− r`) where r1, r2, . . . , r`

are distinct nonzero complex numbers (the roots of f). Then {an} satisfies the linear recur-
rence with characteristic polynomial f(x) if and only if there exist constants B1, B2, . . . , B`

(not depending on n) such that

an = B1r
n
1 + · · ·+B`r

n
` for all n.

7. Example: solving a linear recurrence

Suppose we want to find an explicit formula for the sequence {an} satisfying a0 = 1,
a1 = 4, and

an+2 =
an+1 + an

2
for n ≥ 0.(6)

Since {an} satisfies a linear recurrence with characteristic polynomial
x2 − 1

2
x− 1

2
= (x− 1)(x+ 1

2
), we know that there exist constants A and B such that

an = A(1)n +B

(
−1

2

)n

(7)

for all n. The formula (7) is called the general solution to the linear recurrence (6). To find
the particular solution with the correct values of A and B, we use the known values of a0

and a1:

1 = a0 = A(1)0 +B

(
−1

2

)0

= A+B

4 = a1 = A(1)1 +B

(
−1

2

)1

= A−B/2.

Solving this system of equations yields A = 3 and B = −2. Thus the particular solution is

an = 3− 2

(
−1

2

)n

.

(As a check, one can try plugging in n = 0 or n = 1.)

8. Example: the formula for the Fibonacci sequence

As we worked out earlier, {Fn} satisfies a linear recurrence with characteristic polynomial
x2 − x− 1. By the quadratic formula, this factors as (x− α)(x− β) where α = (1 +

√
5)/2

is the golden ratio, and β = (1−
√

5)/2. The main theorem implies that there are constants
A and B such that

Fn = Aαn +Bβn
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for all n. Using F0 = 0 and F1 = 1 we obtain

0 = A+B, 1 = Aα +Bβ.

Solving for A and B yields A = 1/(α− β) and B = −1/(α− β), so

Fn =
αn − βn

α− β
=

1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]
for all n.

9. Example: finding a linear recurrence from an explicit formula

Let an = (n+ 2n)Fn, where {Fn} is the Fibonacci sequence. Then by the explicit formula
for Fn,

an = (n+ 2n)

(
αn − βn

α− β

)
=

[(
1

α− β

)
n

]
αn +

[(
−1

α− β

)
n

]
βn +

(
1

α− β

)
(2α)n +

(
−1

α− β

)
(2β)n.

By Theorem 1, {an} satisfies a linear recurrence with characteristic polynomial

(x− α)2(x− β)2(x− 2α)(x− 2β) = (x2 − x− 1)2
[
x2 − 2(α + β) + 4αβ

]
= (x2 − x− 1)2(x2 − 2x− 4)

= x6 − 4x5 − x4 + 12x3 + x2 − 10x+ 4,

where we have used the identity x2− (α+ β)x+αβ = x2− x− 1 to compute α+ β and αβ.
In other words,

an+6 − 4an+5 − an+4 + 12an+3 + an+2 − 10an+1 + 4an = 0

for all n. In fact, we have found the minimal characteristic polynomial, since if the actual
minimal characteristic polynomial were a proper divisor of (x2 − x− 1)2(x2 − 2x− 4), then
according to Theorem 1, the explicit formula for an would have had a different, simpler form.

10. Inhomogeneous recurrence relations

Suppose we wanted an explicit formula for a sequence {an} satisfying a0 = 0, and

an+1 − 2an = Fn for n ≥ 0,(8)

where {Fn} is the Fibonacci sequence as usual. This is not a linear recurrence in the sense
we have been talking about (because of the Fn on the right hand side instead of 0), so our
usual method does not work. A recurrence of this type, linear except for a function of n on
the right hand side, is called an inhomogeneous recurrence.

We can solve inhomogeneous recurrences explicitly when the right hand side is itself a
linear recursive sequence. In our example, {an} also satisfies

an+2 − 2an+1 = Fn+1(9)

and

an+3 − 2an+2 = Fn+2.(10)
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Subtracting (8) and (9) from (10) yields

an+3 − 3an+2 + an+1 + 2an = Fn+2 − Fn+1 − Fn = 0.

Thus {an} is a linear recursive sequence after all! The characteristic polynomial of this new
linear recurrence is x3 − 3x2 + x + 2 = (x − 2)(x2 − x − 1), so by Theorem 1, there exist
constants A,B,C such that

an = A · 2n +Bαn + Cβn

for all n. Now we can use a0 = 0, and the values a1 = 0 and a2 = 1 obtained from (8) to
determine A,B,C. After some work, one finds A = 1, B = −α2/(α−β), and C = β2/(α−β),
so an = 2n − Fn+2.

If {xn} is any other sequence satisfying

xn+1 − 2xn = Fn(11)

but not necessarily x0 = 0, then subtracting (8) from (11) shows that the sequence {yn}
defined by yn = xn− an satisfies yn+1− 2yn = 0 for all n, so yn = D · 2n for some number D.
Hence the general solution of (11) has the form

xn = 2n − Fn+2 +D · 2n,

or more simply,

xn = E · 2n − Fn+2,

where E is some constant.
In general, this sort of argument proves the following.

Theorem 3. Let {bn} be a linear recursive sequence satisfying a recurrence with character-
istic polynomial f(x). Let g(x) = ckx

k + ck−1x
k−1 + · · · + c1x + c0 be a polynomial. Then

every solution {xn} to the inhomogeneous recurrence

ckxn+k + ck−1xn+k−1 + · · ·+ c1xn+1 + c0xn = bn(12)

also satisfies a linear recurrence with characteristic polynomial f(x)g(x).
Moreover, if {xn} = {an} is one particular solution to (12), then all solutions have the

form xn = an + yn, where {yn} ranges over the solutions of the linear recurrence

ckyn+k + ck−1yn+k−1 + · · ·+ c1yn+1 + c0yn = 0.

11. The Mahler-Lech theorem

Here is a deep theorem about linear recursive sequences:

Theorem 4 (Mahler-Lech theorem). Let {an} be a linear recursive sequence of complex
numbers, and let c be a complex number. Then there exists a finite (possibly empty) list
of arithmetic progressions T1, T2, . . . Tm and a finite (possibly empty) set S of integers such
that

{n | an = c } = S ∪ T1 ∪ T2 ∪ · · · ∪ Tm.

Warning: don’t try to prove this at home! This is very hard to prove. The proof uses
“p-adic numbers.”
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12. Problems

There are a lot of problems here. Just do the ones that interest you.

1. If the Fibonacci sequence is extended to a doubly infinite sequence satisfying the same
linear recurrence, then what will F−4 be? (Is it easier to do this using the recurrence,
or using the explicit formula?)

2. Find the smallest degree polynomial that could be the minimal characteristic polyno-
mial of a sequence that begins

2, 5, 18, 67, 250, 933, . . . .

Assuming that the sequence is a linear recursive sequence with this characteristic poly-
nomial, find an explicit formula for the n-th term.

3. Suppose that an = n2 +3n+7 for n ≥ 1. Prove that {an} is a linear recursive sequence,
and find its minimal characteristic polynomial.

4. Suppose a1 = a2 = a3 = 1, a4 = 3, and an+4 = 3an+2−2an for n ≥ 1. Prove that an = 1
if and only if n is odd or n = 2. (This is an instance of the Mahler-Lech theorem: for
this sequence, one would take S = {2} and T1 = {1, 3, 5, 7, . . . }.)

5. Suppose a0 = 2, a1 = 5, and an+2 = (an+1)
2(an)3 for n ≥ 0. (This is a recurrence

relation, but not a linear recurrence relation.) Find an explicit formula for an.
6. Suppose {an} is a sequence such that an+2 = an+1 − an for all n ≥ 1. Given that
a38 = 7 and a55 = 3, find a1. (Hint: it is possible to solve this problem with very little
calculation.)

7. Let θ be a fixed real number, and let an = cos(nθ) for integers n ≥ 1. Prove that {an}
is a linear recursive sequence, and find the minimal characteristic polynomial. (Hint: if
you know the definition of cos x in terms of complex exponentials, use that. Otherwise,
use the sum-to-product rule for the sum of cosines cos(nθ) + cos((n + 2)θ). For most
but not all θ, the degree of the minimal characteristic polynomial will be 2.)

8. Give an example of a sequence that is not a linear recursive sequence, and prove that
it is not one.

9. Given a finite set S of positive integers, show that there exists a linear recursive sequence

a1, a2, a3, . . .

such that {n | an = 0 } = S.
10. A student tosses a fair coin and scores one point for each head that turns up, and two

points for each tail. Prove that the probability of the student scoring n points at some
time in a sequence of n tosses is 1

3

(
2 + (−1

2
)n
)
.

11. Let Fn denote the n-th Fibonacci number. Let an = (Fn)2. Prove that a1, a2, a3, . . . is
a linear recursive sequence, and find its minimal characteristic polynomial.

12. Prove the “fact from algebra” mentioned above in Section 5. (Hint: if I 6= {0}, pick
a nonzero polynomial in I of smallest degree, and multiply it by a constant to get a
monic polynomial f(x). Use long division of polynomials to show that anything else in
I is a polynomial multiple of f(x).)

13. Suppose that a1, a2, . . . is a linear recursive sequence. For n ≥ 1, let sn = a1 + a2 +
· · ·+ an. Prove that {sn} is a linear recursive sequence.

14. Suppose {an} and {bn} are linear recursive sequences. Let cn = an + bn and dn = anbn
for n ≥ 1.

(a) Prove that {cn} and {dn} also are linear recursive sequences.
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(b) Suppose that the minimal characteristic polynomials for {an} and {bn} are x2−x−
2 and x2−5x+6, respectively. What are the possibilities for the minimal characteristic
polynomials of {cn} and {dn}?

15. Suppose that {an} and {bn} are linear recursive sequences. Prove that

a1, b1, a2, b2, a3, b3, . . .

also is a linear recursive sequence.
16. Use the Mahler-Lech theorem to prove the following generalization.

Let {an} be a linear recursive sequence of complex numbers, and let p(x) be a poly-
nomial. Then there exists a finite (possibly empty) list of arithmetic progressions T1,
T2, . . . Tm and a finite (possibly empty) set S of integers such that

{n | an = p(n) } = S ∪ T1 ∪ T2 ∪ · · · ∪ Tm.

(Hint: let bn = an − p(n).)
17. (1973 USAMO, no. 2) Let {Xn} and {Yn} denote two sequences of integers defined as

follows:
X0 = 1, X1 = 1, Xn+1 = Xn + 2Xn−1 (n = 1, 2, 3, . . . ),

Y0 = 1, Y1 = 7, Yn+1 = 2Yn + 3Yn−1 (n = 1, 2, 3, . . . ).

Thus, the first few terms of the sequences are:

X : 1, 1, 3, 5, 11, 21, . . . ,

Y : 1, 7, 17, 55, 161, 487, . . . .

Prove that, except for the “1,” there is no term which occurs in both sequences.
18. (1963 IMO, no. 4) Find all solutions x1, x2, x3, x4, x5 to the system

x5 + x2 = yx1

x1 + x3 = yx2

x2 + x4 = yx3

x3 + x5 = yx4

x4 + x1 = yx5,

where y is a parameter. (Hint: define x6 = x1, x7 = x2, etc., and find two different
linear recurrences satisfied by {xn}.)

19. (1967 IMO, no. 6) In a sports contest, there were m medals awarded on n successive
days (n > 1). On the first day, one medal and 1/7 of the remaining m− 1 medals were
awarded. On the second day, two medals and 1/7 of the now remaining medals were
awarded; and so on. On the n-th and last day, the remaining n medals were awarded.
How many days did the contest last, and how many medals were awarded altogether?

item (1974 IMO, no. 3) Prove that the number
∑n

k=0

(
2n+1
k+1

)
23k is not divisible by 5

for any integer n ≥ 0.
20. (1980 USAMO, no. 3) Let Fr = xr sin(rA)+yr sin(rB)+zr sin(rC), where x, y, z, A,B,C

are real and A + B + C is an integral multiple of π. Prove that if F1 = F2 = 0, then
Fr = 0 for all positive integral r.
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