
INEQUALITIES

BJORN POONEN

1. The AM-GM inequality

The most basic arithmetic mean-geometric mean (AM-GM) inequality states simply that
if x and y are nonnegative real numbers, then (x + y)/2 ≥ √

xy, with equality if and only
if x = y. The last phrase “with equality. . . ” means two things: first, if x = y ≥ 0, then
(x + y)/2 =

√
xy (obvious); and second, if (x + y)/2 =

√
xy for some x, y ≥ 0, then x = y.

It follows that if x, y ≥ 0 and x 6= y, then inequality is strict: (x + y)/2 >
√

xy.
Here’s a one-line proof of the AM-GM inequality for two variables:

x + y

2
−√

xy =
1

2

(√
x−√

y
)2 ≥ 0.

The AM-GM inequality generalizes to n nonnegative numbers.

AM-GM inequality:
If x1, . . . , xn ≥ 0, then

x1 + x2 + · · ·+ xn

n
≥ n
√

x1x2 . . . xn

with equality if and only if x1 = x2 = · · · = xn.

2. The power mean inequality

Fix x1, . . . , xn ≥ 0. For r 6= 0 (assume r > 0 if some xi are zero), the r-th power mean Pr

of x1, . . . , xn is defined to be the r-th root of the average of the r-th powers of x1, . . . , xn:

Pr :=

(
xr

1 + · · ·+ xr
n

n

)1/r

.

This formula yields nonsense if r = 0, but there is a natural way to define P0 too: it is simply
defined to be the geometric mean1:

P0 := n
√

x1x2 . . . xn.

One also defines

P∞ = max{x1, . . . , xn}

Date: October 25, 2005.
1The reason for this convention is that when r is very small but nonzero the value of Pr is very close to

the geometric mean, and can be made as close as desired by taking r sufficiently close to 0. In other words,
for those of you who have studied limits before, one can prove that

lim
r→0

Pr = n
√

x1x2 . . . xn.

Another way of saying this, for those of you who know what a continuous function is, is that the only choice
for P0 that will make Pr depend continuously on r is to choose P0 to be the geometric mean.
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since when r is very large, Pr is a good approximation to the largest of x1, . . . , xn. For a
similar reason one uses the notation

P−∞ = min{x1, . . . , xn}.
Here are some examples:

P1 =
x1 + · · ·+ xn

n
is the arithmetic mean,

P2 =

√
x2

1 + · · ·+ x2
n

n
is sometimes called the root mean square. For x1, . . . , xn > 0,

P−1 =
n

1
x1

+ · · ·+ 1
xn

is called the harmonic mean.

Power mean inequality:
Let x1, . . . , xn ≥ 0. Suppose r > s (and s ≥ 0 if any of the xi are zero). Then Pr ≥ Ps, with
equality if and only if x1 = x2 = · · · = xn.

The power mean inequality holds even if r = ∞ or s = −∞, provided that we use the
definitions of P∞ and P−∞ above, and the convention that ∞ > r > −∞ for all numbers r.

Here are some special cases of the power mean inequality:

• P1 ≥ P0 (the AM-GM inequality).
• P0 ≥ P−1 (the GM-HM inequality — HM is for “harmonic mean”).
• P1 ≥ P−1 (the AM-HM inequality).

3. Convex functions

A function f(x) is convex if for any real numbers a < b, each point (c, d) on the line
segment joining (a, f(a)) and (b, f(b)) lies above or at the point (c, f(c)) on the graph of f
with the same x-coordinate.

Algebraically, this condition says that

(1) f((1− t)a + tb) ≤ (1− t)f(a) + tf(b).

whenever a < b and for all t ∈ [0, 1]. (The left hand side represents the height of the graph
of the function above the x-value x = (1− t)a + tb which is a fraction t of the way from a to
b, and the right hand side represents the height of the line segment above the same x-value.)

Those who know what a convex set in geometry is can interpret the condition as saying
that the set S = {(x, y) : y ≥ f(x)} of points above the graph of f is a convex set. Loosely
speaking, this will hold if the graph of f curves in the shape of a smile instead of a frown.
For example, the function f(x) = x2 is convex, as is f(x) = xn for any positive even integer.

One can also speak of a function f(x) being convex on an interval I. This means that the
condition (1) above holds at least when a, b ∈ I (and a < b and t ∈ [0, 1]). For example, one
can show that f(x) = x3 is convex on [0,∞), and that f(x) = sin x is convex on (−π, 0).

Finally one says that a function f(x) on an interval I is strictly convex, if

f((1− t)a + tb) < (1− t)f(a) + tf(b)
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whenever a, b ∈ I and a < b and t ∈ (0, 1). In other words, the line segment connecting two
points on the graph of f should lie entirely above the graph of f , except where it touches at
its endpoints.

For convenience, here is a brief list of some convex functions. In these, k represents a
positive integer, r, s represent real constants, and x is the variable. In fact, all of these are
strictly convex on the interval given, except for xr and −xr when r is 0 or 1.

x2k, on all of R
xr, on [0,∞), if r ≥ 1

−xr, on [0,∞), if r ∈ [0, 1]

xr, on (0,∞), if r ≤ 0

− log x, on (0,∞)

− sin x, on [0, π]

− cos x, on [−π/2, π/2]

tan x, on [0, π/2)

ex, on all of R
r/(s + x) on (−s,∞), if r > 0

A sum of convex functions is convex. Adding a constant or linear function to a function
does not affect convexity.

Remarks (for those who know about continuity and derivatives):
If one wants to prove rigorously that a function is convex, instead of just guessing it from the
graph, it is often easier to use one of the criteria below instead of the definition of convexity.

(1) Let f(x) be a continuous function on an interval I. Then f(x) is convex if and only
if (f(a) + f(b))/2 ≥ f((a + b)/2) holds for all a, b ∈ I. Also, f(x) is strictly convex
if and only if (f(a) + f(b))/2 > f((a + b)/2) whenever a, b ∈ I and a < b.

(2) Let f(x) be a differentiable function on an interval I. Then f(x) is convex if and
only if f ′(x) is increasing on I. Also, f(x) is strictly convex if and only if f ′(x) is
strictly increasing on the interior of I.

(3) Let f(x) be a twice differentiable function on an interval I. Then f(x) is convex
if and only if f ′′(x) ≥ 0 for all x ∈ I. Also, f(x) is strictly convex if and only if
f ′′(x) > 0 for all x in the interior of I.

4. Inequalities for convex functions

A convex function f(x) on an interval [a, b] is maximized at x = a or x = b (or maybe
both).

Example (USAMO 1980/5):
Prove that for a, b, c ∈ [0, 1],

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+ (1− a)(1− b)(1− c) ≤ 1.

Solution:
Let F (a, b, c) denote the left hand side. If we fix b and c in [0, 1], the resulting function of a
is convex on [0, 1], because it is a sum of functions of the type f(a) = r/(s + a) and linear



4 BJORN POONEN

functions. Therefore it is maximized when a = 0 or a = 1; i.e., we can increase F (a, b, c)
by replacing a by 0 or 1. Similarly one can increase F (a, b, c) by replacing each of b and c
by 0 or 1. Hence the maximum value of F (a, b, c) will occur at one of the eight vertices of
the cube 0 ≤ a, b, c ≤ 1. But F (a, b, c) = 1 at these eight points, so F (a, b, c) ≤ 1 whenever
0 ≤ a, b, c ≤ 1.

Jensen’s Inequality:
Let f be a convex function on an interval I. If x1, . . . , xn ∈ I, then

f(x1) + · · ·+ f(xn)

n
≥ f

(
x1 + x2 + · · ·+ xn

n

)
.

If moreover f is strictly convex, then equality holds if and only if x1 = x2 = · · · = xn.

Hardy-Littlewood-Polyà majorization inequality:
Let f be a convex function on an interval I, and suppose a1, . . . , an, b1, . . . , bn ∈ I. Suppose
that the sequence a1, . . . , an majorizes b1, . . . , bn: this means that the following hold:

a1 ≥ · · · ≥ an

b1 ≥ · · · ≥ bn

a1 ≥ b1

a1 + a2 ≥ b1 + b2

...

a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1

a1 + a2 + · · ·+ an−1 + an = b1 + b2 + · · ·+ bn−1 + bn.

(Note the equality in the final equation.) Then

f(a1) + · · ·+ f(an) ≥ f(b1) + · · ·+ f(bn).

If f is strictly convex on I, then equality holds if and only if ai = bi for all i.

5. Inequalities with weights

Many of the inequalities we have looked at so far have versions in which the terms in a
mean can be weighted unequally.

Weighted AM-GM inequality:
If x1, . . . , xn > 0 and w1, . . . , wn ≥ 0 and w1 + · · ·+ wn = 1, then

w1x1 + w2x2 + · · ·+ wnxn ≥ xw1
1 xw2

2 . . . xwn
n ,

with equality if and only if all the xi with wi 6= 0 are equal.

One recovers the usual AM-GM inequality by taking equal weights w1 = w2 = · · · = wn =
1/n.

Weighted power mean inequality:
Fix x1, . . . , xn > 0 and weights w1, . . . , wn ≥ 0 with w1 + · · ·+ wn = 1. For any nonzero real
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number r, define the r-th (weighted) power mean by the formula

Pr :=

(
w1x

r
1 + · · ·+ wnx

r
n

n

)1/r

.

Also let P0 be the weighted geometric mean (using the same weights):

P0 := xw1
1 . . . xwn

n .

Then Pr is an increasing function of r ∈ R. Moreover, if the xi with wi 6= 0 are not all equal,
then Pr is a strictly increasing function of r.

Weighted Jensen’s Inequality:
Let f be a convex function on an interval I. If x1, . . . , xn ∈ I, w1, . . . , wn ≥ 0 and w1 + · · ·+
wn = 1, then

w1f(x1) + · · ·+ wnf(xn) ≥ f (w1x1 + · · ·+ wnxn) .

If moreover f is strictly convex, then equality holds if and only if all the xi with wi 6= 0 are
equal.

6. Symmetric function inequalities

Given numbers a1, . . . , an and 0 ≤ i ≤ n, the i-th elementary symmetric function σi is
defined to be the coefficient of xn−i in (x + a1) . . . (x + an). For example, for n = 3,

σ0 = 1

σ1 = a1 + a2 + a3

σ2 = a1a2 + a2a3 + a3a1

σ3 = a1a2a3.

The i-th elementary symmetric mean Si is the arithmetic mean of the monomials appearing
in the expansion of σi; in other words, Si := σi/

(
n
i

)
. In the example above,

S0 = 1

S1 =
a1 + a2 + a3

3

S2 =
a1a2 + a2a3 + a3a1

3
S3 = a1a2a3.

Newton’s inequality:
For any real numbers a1, . . . , an, we have Si−1Si+1 ≤ S2

i .

Maclaurin’s inequality:
For a1, . . . , an ≥ 0, we have

S1 ≥
√

S2 ≥ 3
√

S3 ≥ · · · ≥ n
√

Sn.

Moreover, if the ai are positive and not all equal, then the inequalities are all strict.
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7. More inequalities

Cauchy(-Schwartz-Buniakowski) inequality:
If x1, . . . , xn, y1, . . . , yn are real numbers, then

(x2
1 + · · ·+ x2

n)(y2
1 + · · ·+ y2

n) ≥ (x1y1 + · · ·+ xnyn)2.

Chebychev’s inequality:
If x1 ≥ · · · ≥ xn ≥ 0 and y1 ≥ · · · ≥ yn ≥ 0, then

x1y1 + · · ·+ xnyn

n
≥
(

x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)
with equality if and only if one of the sequences is constant.

Chebychev’s inequality with three sequences:
If x1 ≥ · · · ≥ xn ≥ 0, y1 ≥ · · · ≥ yn ≥ 0, and z1 ≥ · · · ≥ zn ≥ 0, then

x1y1z1 + · · ·+ xnynzn

n
≥
(

x1 + · · ·+ xn

n

)(
y1 + · · ·+ yn

n

)(
z1 + · · ·+ zn

n

)
with equality if and only if at least two of the three sequences are constant or one of the
sequences is all zero.

You can probably guess what the four-sequence Chebychev inequality looks like.

Hölder’s inequality:
Let a1, . . . , an, b1, . . . , bn, α, β > 0 and suppose that α + β = 1. Then

(a1 + · · ·+ an)α(b1 + · · ·+ bn)β ≥ (aα
1 bβ

1 + · · ·+ aα
nbβ

n),

with equality if and only if
a1

b1

=
a2

b2

= · · · = an

bn

.

Jensen’s extension of Hölder’s Inequality:
Suppose a1, . . . , an, b1, . . . , bn, . . . , `1, . . . , `n, α, β, . . . , λ > 0, and α + β + · · ·+ λ ≥ 1. Then(

n∑
i=1

ai

)α( n∑
i=1

bi

)β

. . .

(
n∑

i=1

`i

)λ

≥
n∑

i=1

(
aα

i bβ
i . . . `λ

i

)
.

Rearrangement inequality:
Suppose a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn are real numbers. If π is a permutation of
1, 2, . . . , n, then

a1bn + a2bn−1 + · · ·+ anb1 ≤ a1bπ(1) + · · ·+ anbπ(n) ≤ a1b1 + · · ·+ anbn.

Minkowski’s inequality:
Suppose a1, . . . , an, b1, . . . , bn ≥ 0, and r is a real number. If r > 1, then

r
√

ar
1 + · · ·+ ar

n + r
√

br
1 + · · ·+ br

n ≥
r
√

(a1 + b1)r + · · ·+ (an + bn)r.

If 0 < r < 1, then the inequality is reversed.
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Bernoulli’s inequality:
If x > −1 and 0 < a < 1, then

(1 + x)a ≤ 1 + ax,

with equality if and only if x = 0. The inequality reverses for a < 0 or a > 1.

8. Problems

There are a lot of problems here. Just do the ones that interest you.

(1) Prove that for any a, b, c > 0,

(a + b)(b + c)(c + a) ≥ 8abc,

and determine when equality holds.
(2) Prove n! <

(
n+1

2

)n
for all integers n > 1.

(3) Prove that the sum of the legs of a right triangle never exceeds
√

2 times the hy-
potenuse of the triangle.

(4) Prove 2
√

x ≥ 3− 1/x for x > 0.
(5) Prove that if a > b > 0 and n ≥ 1 is an integer, then

an − bn > n(a− b)(ab)(n−1)/2.

(6) Let E be the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1,

for some a, b, c > 0. Find, in terms of a, b, and c, the volume of the largest rectangular
box that can fit inside E, with faces parallel to the coordinate planes.

(7) Among all planes passing through a fixed point (a, b, c) with a, b, c > 0 and meeting
the positive parts of the three coordinate axes, find the one such that the tetrahedron
bounded by it and the coordinate planes has minimal volume.

(8) Among all rectangular boxes with volume V , find the one with smallest surface area.
(9) Now consider “open boxes,” with only five faces. Again find the one with smallest

surface area with a given volume V .
(10) Let T be the tetrahedron with vertices (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c) for some

a, b, c > 0. Let V be the volume of T , and let ` be the sum of the lengths of the six
edges of T . Prove that

V ≤ `3

6(3 + 3
√

2)3
.

(11) Let g = n
√

a1 . . . an be the geometric mean of the numbers a1, . . . , an > 0. Prove that

(1 + a1)(1 + a2) . . . (1 + an) ≥ (1 + g)n.

(12) Suppose x, y, z > 0 and x + y + z = 1. Prove that(
1 +

1

x

)(
1 +

1

y

)(
1 +

1

z

)
≥ 64.

(13) Show that one can derive the AM-GM inequality for positive numbers from Jensen’s
inequality with f(x) = − log x.

(14) Prove xx ≥
(

x+1
2

)x+1
for x > 0. (Hint: the function x log x is convex on (0,∞).)

(15) Use Jensen’s inequality to show that among all convex n-gons inscribed in a fixed
circle, the regular n-gons have the largest perimeter.
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(16) Given a, b, c, p, q, r > 0 with p + q + r = 1, prove

a + b + c ≥ apbqcr + arbpcq + aqbrcp.

(17) Show that by taking some of the ai to be equal in the AM-GM inequality, one can
deduce the weighted AM-GM inequality at least in the case where the weights are
nonnegative rational numbers. (To deduce from this the general weighted AM-GM in-
equality, one can then use a limit argument.) Can one similarly deduce the weighted
power mean inequality and weighted Jensen’s inequality from the unweighted ver-
sions?

(18) Prove that if a, b, c are sides of a triangle, then

(a + b− c)a(b + c− a)b(c + a− b)c ≤ aabbcc.

(19) Given a, b, c, d > 0 such that (a2 + b2)3 = c2 + d2, prove

a3

c
+

b3

d
≥ 1.

(20) What well-known inequality does one obtain by taking only the end terms in Maclau-
rin’s inequality?

(21) Prove

(bc + ca + ab)(a + b + c)4 ≤ 27(a3 + b3 + c3)2

for a, b, c ≥ 0.
(22) Prove that if x, y, z, a, b, c > 0, then

x4

a3
+

y4

b3
+

z4

c3
≥ (x + y + z)4

(a + b + c)3
.

(23) Prove that if a, b, c are sides of a triangle, then

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

(24) Derive Chebychev’s inequality from the rearrangement inequality.
(25) Derive the 3-sequence Chebychev inequality from the 2-sequence Chebychev inequal-

ity.
(26) Suppose that 0 ≤ θ1, . . . , θn ≤ π/2 and θ1 + · · ·+ θn = 2π. Prove that

4 ≤ sin(θ1) + · · ·+ sin(θn) ≤ n sin(2π/n).

(27) Show that Jensen’s inequality is a special case of the Hardy-Littlewood-Polyà ma-
jorization inequality.

(28) What is the geometric meaning of Minkowski’s inequality when r = 2 and n = 3?
(29) (IMO 1975/1) Let xi, yi (i = 1, 2, . . . , n) be real numbers such that

x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn.

Prove that if z1, z2, . . . , zn is any permutation of y1, y2, . . . , yn, then

n∑
i=1

(xi − yi)
2 ≤

n∑
i=1

(xi − zi)
2.
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(30) (USAMO 1977/5) Suppose 0 < p < q, and a, b, c, d, e ∈ [p, q]. Prove that

(a + b + c + d + e)

(
1

a
+

1

b
+

1

c
+

1

d
+

1

e

)
≤ 25 + 6

(√
p

q
+

√
q

p

)2

and determine when there is equality.
(31) (IMO 1964/2) Prove that if a, b, c are sides of a triangle, then

a2(b + c− a) + b2(c + a− b) + c2(a + b− c) ≤ 3abc.

(32) (USAMO 1981/5) If x is a positive real number, and n is a positive integer, prove
that

bnxc ≥ bxc
1

+
b2xc

2
+ · · ·+ bnxc

n
,

where btc denotes the greatest integer less than or equal to t.
(33) Make your own inequality problems and give them to your friends (or enemies, de-

pending on the difficulty!)

Many of the problems above were drawn from notes from the U.S. training session for
the International Mathematics Olympiad. Others are from the USSR Olympiad Problem
Book. Many of the inequalities themselves are treated in the book “Inequalities” by Hardy,
Littlewood, and Polyà, which is a good book for further reading.
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