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Part |
Genes and Chromosomes

Biology is extremely complicatedandit is basicallyimpossibleto give an exact mathematicatlescriptionof mary
things,but it is possibleto give mathematicatlescriptionof variousmodels of biological systemghatcanbeinvesti-
gated.Almost everythingthatappeardelow is a simplification,but for the mostpartit’ s true.

Most living things passmuch of their “design” to the next generatiorasinformationencodedy a chemicalcalled
DNA, which is a very long strandcomposedf two complementarchainsof simplerbuilding blocksthat can be
copiedby thecell chemistry Thestructureof DNA is oftencalledthe“doublehelix”. In higherorganismgorganisms
more complicatedthan bacteria),the DNA strandsare supportedoy structurescalled “chromosomes” but theres
basicallyonestrandof DNA arrangedalongeachchromosome.

Therearevariousmethodsusedby cellsto take advantageof DNA's ability to duplicateinformation,but herewe’re
goingto beinterestedprimarily in organismghatreproducesexually. Theseorganismshave two copiesof eachDNA
strand,but the copiesmay be somavhatdifferent. Thus,at a particularspoton a strandis informationthat codesfor
eye color, but eachindividual hastwo copies,soonecopy may codefor brown eyesandtheotherfor blue.

Eachchunkof DNA thatcontainsthe informationfor one particularfeature(lik e eye color, ability to roll thetongue,
the blood-type,andvariousdiseasedik e Tay-Sachsand sickle-cellanemia)is calleda “gene”. Thesegenescanbe
thoughtof asarrangedik e a string of beadsalonga strandof DNA. Dependingon the organism therearedifferent
numbersof strands/chromosomeb humansfor example,thereare23 pairs,or 46 total chromosomesQuite often,
thespotonachromosomeavherea geneis foundis calleda“locus”, andthevariouspossibilitiesfor thegeneghatcan
befoundatthatlocusarecalled“alleles”.

Generally eachgeneencodesnformationto constructa protein. Differentgenesmay encodedifferentproteins,or
noneatall. For example(asaroughapproximation)the “brown” genefor eye-colorencodeghe proteinthat makes
the brown pigmentin the eye. If thereis no pigmentpresentthe eyesareblue. Sinceeachpersonhasa pair of
chromosomesherearetwo (possiblydifferent)genesandif eitherof themmakesthe brown pigmentprotein, the
eyeswill bebrown. If neithergeneencodeghe brown pigment,theeyeswill beblue.

Soif B representthegeneencodinghebrown pigment,andb thegeneencodinghopigmentandif welist thepossible
pairsof geneghatcanoccuron the pair of chromosomesye obtain: BB, Bb, bB, andbb. Individualshaving ary of

thefirst threecombinationswill have brown eyesbecause¢hey canmalke the pigment,andonly individualshaving bb

will have blue eyes,sinceneitherchromosoméiasinstructionsto make the brown pigment. If anindividual hasblue
eyes,we know thatit hastypebb; if it hasbrown eyes,it may have ary of the othercombinations.The “phenotype”
of anindividual is what we cansee—inthis case the possiblephenotypesre “brown-eyed” and“blue-eyed”. The
“genotype”is the actualcombinationof genegresentwhich maybe difficult to determine.

During mating, eachparentsuppliesone geneof the two that are available, so the offspring hasone copy from its
motherandonefrom its father The egg or spermis calleda “gamete”,andthe combinationof a particularegg and
spermis calleda“zygote”. Normally, thegeneprovidedby eachparents selectecitrandomfrom thetwo possibilities,
with a 50% probability for each. Continuingwith the B-b exampleabove, supposehat both parentshave genotype
Bb—oneof eachtype. Thushalf the gametegrom eachparentareof type B andhalf of typeb. It's not hardto see
thattherearefour equally-likely possibilitiesfor the offspring: BB, Bb, bB, andbb. Thus,on average 3 of every 4



offspringwill have brown eyes.

Part |1
The Hardy-Weinberg Law

In thecaseof blueversusbrown eyes,thereis notremendouslifferencein theability of thetwo phenotypeso survive.
Thefirst thing we will shav mathematicallyis known asthe “Hardy-Weinbeg Law!”: thatif thereis no difference
in fitnessamongthe phenotypesthenthe proportionsof the geneswill not changegatleastin a populationthatis so
largethatit canbe considerecdkssentiallyinfinite).

One simplifying assumptiorwe malke is that matingis random. Assumethatin the population,the probability of
having genotypeAA is P, the probability of having genotypeAa is @, andthe probability of having genotypeaa is
R. Thenthefollowing tabledisplaysthe outcome®f randommating:

H AA: P ‘Aa: Q ‘aa: R ‘
AA: P | AA: P? | AAT 1PQ | Aa: PR
Aa: 1PQ
AA: IPQ | AAT 1Q? | Aar IQR
Aa: Q|| Aa: iPQ | Aa: 1Q? | aar IQR

aa: 1Q?
aa: R | Aa: PR | Aa iQR | aa R?
aa: iQR

Beforethe mating,the probability of anA-typealleleis P + Q/2 andof aa-typealleleis R + ()/2; eachAA parent
is certainto producean A-type allele, eachAa parenthasa 50% probability of doing so,andsimilarly for the a-type
alleles.

After mating, we just needto add up the total numberof resultingadultsof eachtype. We use P/, @', and R’ to
indicatethe probabilitiesof typesAA, Aa, andaa aftermating,respectiely:

P' = P24+ PQ/2+PQ/2+Q%/4
Q = PQ/2+PR+PQ/2+Q*/2+QR/2+ PR+ QR/2
R = @Q%/4+QR/2+QR/2+R?

The probability of an A-type allele after matingis similarly P’ + @'/2 andof ana-typealleleis R’ + Q'/2. Let's
evaluateP’ + Q' /2 (theevaluationof R’ + Q' /2 is exactly similar). RemembethatP + @ + R = 1:

P +Q'/2 = P*+PQ/2+PQ/2+Q*/4
+(PQ/2+ PR+ PQ/2+Q*/2+ QR/2+ PR+ QR/2)/2
= P?+3PQ/2+ PR+ QR/2+ Q*/2
= (P*+PQ+ PR)+ (PQ+QR+Q*/2
PP+Q+R)+Q(P+Q+R)/2
= P+Q/2
1Thisis alsoknown asthe “Hardy-Weinbeg Equilibrium”




This provesthatif thereis randommatingandno selectve advantageto any of thegenotypestherewill beno change
in allelefrequeny asaresultof mating.

Part 111
Fithess

The biological conceptof fitnessis very easyto describe but it is difficult for mary peopleto understandsinceit
seemsomavhatunnatural.

The“fitness” of anindividualis simply the expectednumberof offspringit will leavein the next generation.

If you think of fitnessasbeingstrong,or fast,or disease-resistangpu will often beright, but not necessarily—you
will beright only if thosecharacteristichelptheindividualto producemoreoffspring.

For example,suppos@netype of organismcanlive thoroughbathsof acid or throughafire, andanothercannot.The
first type of individual leaves,on average,2 offspring, but the secondtype leaves 3. If thereareno bathsof acid or
fires,the secondndividualis far morefit thanthefirst (in abiologicalsense).

It is oftenimportantto talk aboutthe “relative fitness” of differenttypesof organismwhich is just the ratio of their
fithessesFor example,if thereareindividualsof genotypeAA, Aa, andaa, andtheir relative fithessesre2, 1, and
1.3, respectiely, thatmeanghaton averageindividualsof type AA producetwice asmary offspringasthoseof type
Aa, andindividualsof typeaa producel.3timesasmary offspringasdo thoseof type Aa.

Part IV
Recessive L ethal Genes

Supposesomegeneis sobadthatit is certainto kill theindividual beforethatindividual hasa chanceo breed.What
will happento thefrequeng of thatgene?The interestingcaseis the “recessie lethal”, whereevery individual that
hastwo copiesof thatallele diesbeforereproduction.It is easyto imaginea situationlik e this—supposéehe locus
codesfor someproteinthatis vital to life, but thatanindividual cansurvive just fine with only onefunctionalcopy of
agene.In otherwords,individualsof type AA andAa dojustfine, but individualsof type aa areeliminatedfrom the
next generation.

If the initial condition of the populationhas A-type alleleswith probability p and a-type alleleswith probability
g = 1 — p, theresultingdistribution of the offspringwill have p? individualsof type AA, 2pq individualsof type Aa,
andg? individualsof type aa,noneof whom survive. So after matingandthe deathof the unlucky individualswho
gottheaa combinationwhatremainsof the original populationis a relative proportionof p? type-AA individualsand
2pq type-Aa individuals. Thustherelative proportionsof allele A anda arep? + pg andpg, respectiely.

Thesearerelative proportions however. To getprobabilities,we needto divide by p? + 2pq, giving the probabilities
of finding atype-A andtype-a allelep’ = (p* + pq)/(p* + 2pq) andq’ = pq/(p® + 2pq), respectiely. (p’ andq’ are
the new probabilitiesof finding the allelesafterbreeding.)

Sowhathappendo apopulationlik e this overtime? Recallingthatp + ¢ = 1 (sop = 1 — g), we obtain:

f = P ¢(1-4q)
pPP+2pg (1-9)?=2(1-9
- _q4-q

1-2¢94+¢2+2¢—-2¢> 1-—¢2




ol-q) _ 4
(I+9)(1-¢q 1+g¢
Thustheprobabilityof having thelethalgenea goesfrom ¢ to g/ (14 ¢) with eachgenerationSinceg > 0, (1+¢) > 1,
sowith eachgenerationthe numberof allelesof type a decreasesNaturalselectiongraduallyeliminatesthe lethal
genefrom the population.
But how fast?

If we denoteby the function f(g) = ¢/(1 + ¢) the resultof one generatiorof selection,then f(f(q)) represents
the resultaftertwo generationsf (f(f(q))) theresultafterthreegenerationset cetera.Let's calculatef (f(¢)) and

FF(1(@)):

f(f@) = flg/1+q)
q/(1+9q)
1+g¢/(1+4q)
= ¢/(1+2g).

f(f(f@)) = fla/(1+29))
q/(1+ 2q)
1+¢/(1+2q)

= ¢/(1+3q).
If we represenby (™ (gq) theresultof n iterationsof thefunction f, it is not hardto prove usinginductionthat:
F™(q) = ¢/(1 + ng).

To getafeelingfor this, let's assumehatinitially (we will call thisinitial state“generationzero”) the populationhas
50% of eachkind of allele. Thenastime goeson, hereis the proportionof allele a:

Generation| 0 1 2 4 8 | 100 1000
Proportiona | .5 | .3333| .25 | .1667 | .1 | .0098 | .000998

This is a very slow elimination of the gene—afterl000 generationsstill nearlyonein a thousandallelesis of the
lethalrecessietype.
For our next example,considerwhat happensf the allele a is still lethal whenit appearsastype-aa, but alsois
slightly deleteriousf it occursin theform Aa. Thefitnesse®f thethreetypesAA, Aa, andaa will bel + s, 1, and0,
respectiely, wheres is a smallpositive number If s = .1, for example,this meanshattype-AA is 10% morelikely
to produceoffspringastype-Aa.
Theproportionsafterbreedingandeliminationof theless-fitindividualswill betype-AA: (1 + s)p? andtype-Aa: 2pq.
Doing exactly the sameasabove, we obtain:
q/ _ bq
(1+ s)p* + 2pq

q(1-gq)
(I+s)(1-9)*+2¢(1-q)

q _ q
(1+s)(1—q)+2¢ (1+s)+q(l-3s)

Again, we would like to let f(g) = ¢’ andevaluatethe functions f(f(q)), f(f(f(q))), et cetera. To simplify the
calculation Jet'stemporarilyleta = (1 + s) and8 = (1 — s), giving us:

¢ == 115 @)

4



To figure outwhat's goingon, work out afew of thetermsby handto get:

fleg = afﬂq
q
f(fl@) = o + B+ a)g
FUE@) = Frsayatas
FFF(F@) = a

at+ 81 +a+a?+ad)g

Thepatternabove is obvious(andeasyto prove by induction):

(") (g) — 9
f (Q)—an+6(1+a+...+an—1)q.

If werecallthat

1—a”
l+a+--+amt=2"2%
l-a

we obtain: - q
f n (q) = N
am +B8(5 =% )e

Using this formula, let’'s checkthe rate of disappearancef the allele a asa function of time aswe did earlier, but
this time, we will let s = .01, sotype-AA is about1% morelikely to survive thantype-Aa. We'll againbegin with
g = .5—halftheallelesareoriginally of type-a:

Generation| 0 1 2 4 8 | 100 1000
Proportiona | .5 | .3322| .2481 | .0964| .1 | .0057| .000000472

A quick comparisorshows that convergenceto zero (the elimination of the detrimentalgene)is much morerapid if
thereis evenatiny disadwantageo the heterozygote.

But now let’s examinethe situationif s is negatve—in otherwords,the heterozygotéa is slightly more fit thanthe
homozygoteAA. Theformulais exactlythesamebut in thetablebelow, s = —.01:

Generation| O 1 10 50 500 50000 | 1000000
Proportiona | .5 | .3344| .0872| .0243| .009965| .009901| .009901

Theallelea certainlydecreasem frequeng, but eventuallyseemdo get“stuck” atabout1% of thetotal. Let'sdoa
similar experiment but startwith ¢ = .00001—justthetiniestamountof allelea in the population:

Gen. 0 1 10 50 500 | 50000 | 1000000
Prop.a | .0001 | .000101| .00011| .00016| .006 | .009901| .009901

This time, the frequeny of a actuallyrisesuntil it reacheghe samevalue as previously. Whatwe seeabove is a
specialcaseof the situationknown as“heterozygoteadvantage”.In generalf the heterozygotdorm Aa is morefit
thaneither AA or aa, naturalselectionwill not eliminateeithergene,assuminghat both areinitially presentin the
population.



Part V
|terated Functions

One of the featuresof mathematicabeneticsis that we frequentlyuseiteratedfunctions—wetake the outputof a
functionandplug it backinto the original function. This is becauseghe “input” to the next generatioris the sameas
the“output” of thepreviousgeneration.

Figurel: f(q) = ¢/(1.1+ .9q) Figure2: f(q) = ¢/(.6 + 1.4q)

Figurel providesa nice example. We have plotted Equation(1) onthe samesetof axesastheline y = . Thenwe
pick a startingpoint (in this caseatz = .5, thebeginningof theiteration,anddraw aline upto the curve. The height
of thecurveis the outputvalue,andif we wish to usethatasaninputvalue,we justgo horizontallyto theline y = «,
andwhereverit meetsthat'sthenew z coordinatefor input. Repeathe processandthe staircasedine shavs how the
functioniterates—inthis caseto thefixedpointx = y = 0.

In fact,whereverourcurve crossesheline y = z is afixedpointof thefunction—theinputis equalto theoutput.Let’s
considera differentfunction (just Equation(1) with a differents) thatcorrespondso a negative s with heterozygote
advantage:f(¢) = ¢/(.6 + 1.4q). Theresultis plottedin Figure2.

In this case notethatthe curve crossesheline y = z atapoint otherthan(0, 0), soit is a possiblefixed point. If we
tracethe staircasewe canseethatit corvergesto thefixedpoint. As anexercise tracethe staircasestartingat a value
of z lessthanthez-coordinateof thefixed point.

Figure3: f(q) = ¢*/2 Figure4: f(q) = .7 — ¢*/2

Finally, let'slook at anothertype of fixed pointasshowvn in Figure3. Thistime thecurvedline crossesheliney = z



from below, andthe staircasegventhoughit beganquite nearthe point of equilibrium, diverged. Try startingjust
below the point of equilibriumandseewhathappens.

A final andveryinterestingexamplecanbeseenin Figure4. Thereis corvergenceagain,but thistimein aspiral. Can
you constructa similar example,but wheredivergenceoccurs(in aspiral)?

Whencorvergenceoccurs hoticehow easyit is to find thepoint of corvergence For example,in Figure2, theiteration
will corvergeto the pointwheref(q) = ¢g. We cansolve for thatequationasfollows:

q
fa) =9 = 594,
(6+14q)g = ¢
6+14g = 1
l4qg = 4
¢ = 4/1.4 = 27,

Part VI
Fitness Ver sus Frequency Plots

All theplotsthatfollow have a verticalaxisfrom O to 1 thatrepresentshe proportionof allele A. The horizontalaxis
representgienerationsfrom 0 to 100. The 11 curvesrepresenequally-spacedtartingproportionsof A from 0.01to
0.99.

Figure5: Fua = 1.0; F4, = 1.0; F,, = 0.0

Figure6: Fua = 1.0; F4, = 1.0; F,, = 0.9



Figure7: Faa = 1.0; F4, = 1.5; F,, = 0.0

Figure8: Fua = 1.0; F4, = 1.1; F,, = 0.9

Figure9: Fua = 1.0; F4, = 0.8; F,, = 1.0

Figurel0: Fya = 1.0; F4, = 0.5; F,, = 0.7



