Is it possible to cut a cube into pieces
and to assemble a tetrahedron?
Hilbert’s problem and Dehn’s theorem

Dmitry FUCHS

1 Hilbert’s Problem Three.

Is it possible to cut a cube by finitely many planes and assemble, out of the
polyhedral pieces obtained, a regular tetrahedron of the same volume?

This is a slight modification of one of the 23 problems presented by David
Hilbert in his famous talk at the Congress of Mathematicians in Paris, on
August 8, 1900; it goes under the number 3. Hilbert’s problems had a tremen-
dous impact on Mathematics. Most of them were solved during XX century,
and each has a very special history. Still, Problem Three stands exceptional
in many respects.

First, this was the first of Hilbert’s problems to be solved. The solution
belonged to a 23 years old German geometer, Hilbert’s student Max Dehn
[3]. His article appeared two years after the Paris Congress, but the solution
existed earlier, maybe, even before Hilbert stated the problem.

Dehn’s proof (more or less the same as the one presented below) was short
and clear, and it became one of the favorite subjects for popular lectures,
articles, and books in geometry, like the one you are holding in your hands (I
can recommend the book by Boltianskii [1] for a more extended exposition).
But among working mathematicians, it was almost forgotten.

Certainly, the name of Dehn was not forgotten. He became one of the few
top experts in topology of three-dimensional manifolds, and his work of 1902
has been never regarded as his main achievement; it is not even mentioned
in Dehn’s biography available on the web.

In 1976, American Mathematical Society published a two-volume collec-
tion of articles under the title “Mathematical Developments Arising from



Hilbert Problems” [5]. It was a very solid account of the three quarters of
century of history of the problems: solutions, full and partial, generaliza-
tions, similar problems, and so on. This edition contains a thorough analysis
of 22 of 23 Hilbert’s problems. And only Problem Three is not discussed
there. The opinion of the editors is obvious: no developments, no influence
on Mathematics; nothing to discuss.

How strange it seemed just a couple of years later! Dehn’s theorem,
Dehn’s theory, Dehn’s invariant became one of the hottest subjects in geom-
etry. This was stimulated by then new-born K-theory, an exciting domain
developed along the borderline between algebra and topology. We will not
follow this development, but will just revise the theorem and its proof.

2 For a similar problem in the plane the an-
swer is yes.

Theorem 2.1 Let Py, Py be two polygonal domains in the plane having the
same area. Then it is possible to cut Py into pieces by straight lines and to
assemble Of these pieces Psy.

Proof. First, it is clear that it is sufficient to consider the case when P;
is a rectangle with the sides 1 and area P;; in doing this, we can shorten the
notation of P; to just P.

Second, since any polygonal domain can be cut into triangles, we can
reduce the general case to that of a triangle (see Figure 1).
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Figure 1:
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Third, we need to remake, by cutting and pasting, a triangle into a rect-
angle with one if the sides having length one. This is done, in four steps, on
Figure 2.
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Figure 2:

We do this in four steps. First, we make a parallelogram out of our triangle
(Step 1). Then we cut a small triangle on one side of the parallelogram and
attach it to the other side in such a way that the length of one of the sides of
the parallelogram becomes rational, p/q (Step 2). On Step 3, we make this
parallelogram a rectangle (the number of horizontal cuts needed depends on
the shape of the parallelogram). On the final step, we cut the rectangle into
pq equal pieces by p — 1 horizontal lines and g — 1 vertical lines (with the
understanding that it is the vertical side of the rectangle that has the length
p/q); then we rearrange these pg pieces into a rectangle with the length of
the vertical side being 1.

3 A planar problem which does not look sim-
ilar to Hilbert’s Problem Three, but has a
similar solution.

Is it possible to cut a 1 x 2 rectangle into finitely many smaller rectangles with

sides parallel to the sides of the given rectangle and to assemble a v/2 x \/2
square?



The answer is NO. The proof is more algebraic than geometric, but still,
unlike the Hilbert Problem, it requires a small geometric preparation.

3.1 A geometric preparation.

Let us given two rectangles with vertical and horizontal sides (below, we will
call such rectangles briefly V H-rectangles), and suppose that is is possible
to cut them into smaller V H-rectangles such then the pieces of the first are
equal (congruent) to the pieces of the second.
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Figure 3:

Then there exists a collection of N (still smaller) V H-rectangles such
that each of the given rectangles can be obtained by a sequence of N — 1
admissible moves. An admissible move: we take two of our small rectangles
having equal widths or equal heights and attach them to each other vertically
or horizontally, creating one rectangle of the same width or height. Thus



our process of cutting is replaced by a more strict process of attaching of
rectangles. How to do this, is shown on Figure 3.

Suppose that two rectangles are cut into equal pieces as requested by
Problem (rectangles (A) and (C') on Figure 4; equal pieces are marked there
by the same Arabic numbers). Then we extend the sides of the pieces to the
whole width or length of the rectangle (see rectangle (B) of Figure 4). Some
of the pieces of division are cut into smaller pieces (marked by Roman letters
in rectangle (B): so 1 becomes a union of a,b,e and f, 2 becomes a union
of ¢ and d, etc.) Then we divide in the same way the pieces of the second
given rectangle (see rectangle (D) of Figure 4; we break the rectangle 1 of
rectangle (C') into pieces congruent to a, b, e, f, the rectangle 2 into pieces
¢,d, and so on). We obtain a new division of the second given rectangle
into smaller rectangles, and again extend the sides of these smaller pieces
to the whole width or length of the rectangle (see rectangle (£) of Figure
4). These last pieces form our collection. Obviously we can assemble the
second rectangle, (C), from these pieces using the admissible moves. Other
admissible moves produce, out of our small rectangles, the parts of the finer
division of the rectangle (A) (that is, a,b,c,...,0,p), and out of this part
we can assemble, using admissible moves, the rectangle (A). The geometric
preparation is over.

3.2 An algebraic proof.

Let us have a finite collection of V H-rectangles of the total area 2. Then no
more than one of the following two is possible:

— to compose out of these rectangles a 1 x 2 rectangle using only admissible
moves;
to compose out of these rectangles a \/2 x \/2-square using only admis-
sible moves.
This is what we need to answer negatively the question of these section.

Let wy, ..., wy be the widths of the rectangles of our collection (N being
the number of these rectangles), and hq,..., hy be their heights.
Consider the sequence

1L,V2,wy, ..., wy; (1)

remove a member of this sequence if it is a linear combination, with rational
coefficients, of the preceding members. (Thus, we do not remove 1; we do not



remove /2, since it is irrational; we remove wy, if and only if w; = r; —I-TQ\/Z
with rational ry, 75, and so on.) Let ay,...,a, be the remaining numbers
(thus, a; = 1,ay = V/2). It is important that each of the numbers (1) can
be presented as a rational linear combination of the numbers a4, ..., a,, in a
unique way'.

Now, do the same with the sequence

1,V2,hi, ..., hy. (2)

We will get the numbers bq,...,b, with by = 1,0y = V2 such that each of
the numbers (2) can be presented as a rational linear combination of the
numbers by, ..., b, in a unique way.

Call a rectangle admissible, if its width is a rational linear combination
of ai,...,a, and its height is a rational linear combination of by,...,b,.
Let P be an admissible rectangle of the width w and the length h, and
let w = 3" ra; and h = Z;LZI s;b; with rational r;’s an d s;’s. We de-
fine the symbol Symb(P) of the rectangle P as the rational m X n matrix
||Si;|| with S;; = r;s;. We usually will use for the symbols the notation
Symb(P) = >, .risja; ® b; (which is simply the alternative notation for
the matrix above). Thus, we regard the symbols as “formal rational linear
combination” of the “expressions” a; ® b;. Such formal linear combinations
cab be added in the obvious way; we consider two formal rational linear
combinations }, . t;;a; @ bj, >, ;tla; ® b; equal if ¢;; = t7; for all i, j.

Let P" and P” be two admissible rectangles of equal heights or equal
widths. Then we can merge these two rectangles into one rectangle, P, using
an admissible move (see above). Obviously, P is also an admissible rectangle,
and Symb(P) = Symb(P’) + Symb(P"). Indeed, if P’ and P” have widths

!This is a standard theorem from linear algebra, but for the sake of completeness, let us
give a proof. 1 = a; is a rational linear combination of a, ..., am, s0 is V2 = ay. Assume,
by induction, that all the numbers (1) preceding wy are rational linear combinations
of a,...,a,. If wg is not a rational linear combination of preceding numbers; then
it is one of a;’s, and hence is a rational linear combination of ay,...,an; if wg is a
rational linear combination of preceding numbers, then it is a rational linear combination of
ai, ..., 0y, since all the preceding numbers are rational linear combinations of aq, ..., ay,.
It remains to prove uniqueness. If two different rational linear combinations of aq, ..., am,
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are equal, 331", rja; = > 0 rfa;, and s is the largest of 1,...,m, for which 7} # r, then

r,—T; . . . . . . .

as = E ,’, l, a; which shows that a, is a rational linear combination of preceding a;’s,
im1 s s

in contradiction to the choice of ay, ..., am,.



w' =" ria; and w" = 37" rl'a; and the same height h = 7 | s;b;, then
P has the width w' +w” = Y"1 (r} + r!')a; and the height h, and
Symb(P) =3, ,(ri+71])s; a; ®b;
=220 Tisi i @by + 7, i rils ai ® b

= Symb(P’) + Symb(P").

Thus, if we have a collection of admissible rectangles, P,..., Py, and can
assemble out of them, by N — 1 admissible moves, a rectangle P, then
Symb(P) = Zf\;l Symb)P;). If we can assemble in this way two different
rectangles, P and P’, then Symb(P') = Symb(P). This proves our theorem,
since the symbol of a 1 x 2 rectangle is 2(a; ®b;), and the symbol of a V2x+/2
square is as ® by which is different.

4 Proof of Dehn’s Theorem.

We want to prove the following.

Theorem 4.1 Let C' and T be a cube and a regular tetrahedron of the same
volume. Suppose that each of them is cut into the same number of pieces by
planes. (That is, we cut our polyhedron into two pieces, then cut one of the
two pieces into two pieces, then cut one of the three pieces into two pieces,
and so on.) It is not possible that the two collection of (polyhedral) pieces are
the same.

Proof. Let ¢1,..., ¢y be the lengths of all edges of all polyhedra involved in
the two cutting processes. Let ¢1, ..., pn are corresponding dihedral angles
(we suppose that 0 < ¢; < 7 for all 7). Take the sequence /q,... elly
and remove from it any term which is a rational linear combination of the
previous terms; we obtain a sequence aq,...,a, such that each of the ¢;’s
is equal to a unique rational linear combination of a;’'s. Then do the same
with the sequence 7, @1,...,@N; the resulting sequence is denoted as oy =
T, 00, ..., 0y, and each of ¢ ’s is equal to a unique linear combination of «;’s.
Call a convex polyhedron admissible, if the length of every edge is a rational
linear combination of ay, ..., a, and each dihedral angle is a rational linear
combination of ag, aq, ..., .

Let my,...,my be the lengths of edges of an admissible convex poly-
hedron P, and let ,,...,4¢, be the corresponding dihedral angles. Let
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my = Yoo, TRia; and ¥, = Z?:o sgjc;. Define the symbol of P by the
formula

Symb(P) = Z Z (Z rkiskj) a; ® aj.

i=1 j=1 \k=1

Important remark: it is not a misprint that the second summation is
taken from j = 1 to n, not from 7 = 0 to n; we do not include into the
symbol the summand sggm. Thus, if one changes an angle by a rational
multiple of 7, then the symbol is not affected; if some dihedral angle s a
rational multiple of 7, then the corresponding edge do not appear in the
expression for the symbol at all.

Example: the symbol of a cube (or of a rectangular box) is zero. Indeed,
all the angles are 7/2.

Exercise: the symbol of any rectangular prism with a polygonal base is
7€ro.

Lemma 1 Let P be a convex polyhedron. Suppose that it is cut by a plane L
into two pieces, P' and P". Then (provided that P, P', and P" are admissible,

Symb(P) = Symb(P’) 4+ Symb(P").

Proof of Lemma. Let S = {ey,...,e,} be the set of all edges of P, let ¢
be the length of the edge e, and i, be the corresponding dihedral angle. We
divide the set S into four subsets: S; consists of edges which have no interior
points in L and lie on the P’ side of L; S, is the similar set with P” instead
of P'; S; consists of edges e, cut by L into an edge e, of P’ and an edge
e; of P"; and Sy consists of edges which are totally contained in L; for each
er € Sy, the dihedral angle vy, is divided by L into two parts: 1}, and v}.
Consider also the intersection L N P. This is a convex polygon; each e, € Sy
is its side; let T" = {fy,..., f,} be the set of all other sides of R. Each fj
is a side both of P' and P"; let my be the length of f; and X}, x) be the
corresponding dihedral angles in P" and P". Obviously, x} + x} = 7.
Edges of P":
— the edges e € Si; the lengths are /i, the angles are );
— the edges e} for e, € Ss; the lengths are £;, the angles are 1;
the edges e, € Sy; the lengths are /;, the angles are v ;
the edges fr € T'; the lengths are my, the angles are x.



Edges of P":

— the edges ex € Sy; the lengths are /i, the angles are );
the edges e} for e, € S3; the lengths are ¢}, the angles are 9/
the edges e, € Sy; the lengths are /j, the angles are ¢
the edges fr € T'; the lengths are my, the angles are x}.

Figure 4:

The symbols of each of the polyhedra P’, P”, and P consists of four groups
of summands; for P’ and P” these groups correspond to the four groups



of edges as listed above; for P they correspond to the sets Sy, .S, S5, 5;.
The first group of summands in Symb(P’) is the same as the first group
of summands in Symb(P). The first group of summands in Symb(P") is
the same as the second group of summands in Symb(P). The sum of the
second groups of summands in Symb(P’) and Symb(P") is the third group
of summands in Symb(P) because £} + ¢} = ¢;. The sum of the third groups
of summands in Symb(P’) and Symb(P") is the fourth group of summands
in Symb(P) because ) + 1) = 1. At last, the sum of the fourth groups of
summands in Symb(P’) and Symb(P") is zero, since x}, + xj = 7/2. Thus,
Symb(P) = Symb(P') + Symb(P") as stated by Lemma.

An example is shown on Figure 4. A polyhedron P (a four-gonal prism
with non-parallel bases, shown at the left of the first row) is cut into two
polyhedra by a plane (the cut is shown in the first row, the polyhedra P" and
P" are shown in the second row). The edges of P are ey, ...eqy; the sets S;
are: S1 = {ey,e3,eq,e5}, Sy = {eg, e7, €9, €10, €11, €12}, 53 = {eg}, Sy = {ex}.

Bach to Theorem. If two polyhedra can be cut into the same collection
of polyhedral parts, then their symbols are both equal to the sum of the
symbols of the part, and, hence, the symbols of the given two polyhedra are
equal to each other. But the symbol of a cube is equal to zero, since all the
angles are m/2 (see Example above). The symbol of a regular tetrahedron
is equal to 6(¢ ® «) where £ is the length of the edge and « is the dihedral
angle. All we need to check is that « is not a rational multiple of 7.

Figure 5:

The dihedral angle of a regular tetrahedron is the largest angle of an

V3

isosceles triangle whose sides are 5,67,57 (see Figure 5). The cosine
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theorem shows that

2 2
V3 V3
(2) () +-
cosa = s 7 =3
2 (e9) ()
1 a .. .
Lemma 2 If cosa = 3’ then — 1is irrational.
™

Proof of Lemma. Otherwise, cosna = 1 for some n. However, it is known
from trigonometry that

cosna = Py, (cos a)

where P, is a polynomial of degree n with the leading coefficient 271,
[Proof by induction. Statement: for all n,

cosna = P,(cos ), sinna = @Q,(cos «) - sin «

where deg P, = n, deg@,, = n — 1, and the leading coefficients of both P,
and @, are equal to 2”71, For n = 1, this is true (P, (t) = t,Q:(t) = 1);
assume that the statement is true for some n. Then

cos(n+ 1)a = cosnasina — sin nasin «
= P,(cosa) cosa — Q,(cosa) sin® a
= P,(cosa) cosa + Qy(cosa)(cos? aw — 1);

sin(n + 1)a = sinna cos a + cos nasin o
= @Qn(cos a)sinacosa + P,(cos a) sina
= (Qn(cos a) cos a + P,(cos o)) sin «

Hence,

Pn+1(t) = Pn(t)t+Qn(t)(t2 o 1)a
Qn+1(t) = Qn(t)t + Pn(t)a

and the statement for the degrees and leading terms follows.|
This shows that

1) 271 an integer
3

=P, = +
COS Ny < a ST

which cannot be an integer, in particular, 1.
This proves Lemma and completes the proof of Dehn’s theorem.

11



5 Some further results.

In the language of algebra (which may technically not familiar to the reader,
but the formulas below seem to me self-explanatory), the construction of the
previous section assigns to every convex (actually, not necessarily convex)
polyhedron a certain invariant, “Dehn’s symbol”,

Symb(P) € R®q (R/7Q),

and Dehn’s theorem states that if two polyhedra, P; and P,, are equipartite
(that is, can be cut by planes into identical collections of parts), then

Symb(P;) = Symb(F,).

(This is precisely the result of the previous section.)

A

Figure 6:
Certainly, this may be applied not only to cubes and tetrahedra. The
initial Hilbert’s problem, by the way, dealt with a different example; Hilbert

conjectured that two tetrahedra with equal bases and equal heights (like
those on Figure 6 are not equipartite.

%%!/

Figure 7:

The origin of this question belongs to the foundations of geometry. The
whole theory of volumes of solids is based on the lemma stating that the
volumes of tetrahedra in Figure 6 are the same. The similar planar lemma
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(involving the areas of triangles) has a direct geometric proof based on cut-
ting and pasting. But the three-dimensional fact requires a limit “stair con-
struction” involving pictures like Figure 7 (you can find a figure like this in
textbooks in the spatial geometry). The question is, is this really necessary,
and the answer is “yes”: Dehn’s theorem easily implies that the tetrahedra
like those in Figure 7 are not, in general, equipartite.

More than 60 years after Dehn’s work, Sydler proved that polyhedra
with equal volumes and equal Dehn’s invariant are equipartite [4]. There are
similar results in spherical and hyperbolic geometries.

Dehn’s symbol may be generalized to polyhedra of any dimension: for an
n-dimensional polyhedron P,

dihedral

angle at s

Symh(P) = Z volume(s) ® [

(n — 2)-dimensional
faces s of P

] € R®g (R/7Q)

(the angle is formed by the two (n— 1)-dimensional faces of P attached to s).
In dimension 4, like in dimension 3, two polyhedra are equipartite, if and only
if their volumes and their symbols are the same. But in dimension 5 it is not
true any longer: there arises a new invariant, a “secondary Dehn’s symbol”
involving a summation over the edges (for an n-dimensional polyhedron,
over (n—4)-dimensional faces) of P. There is a conjecture (I do not know its
current status) that an “equipartite type” of an n-dimensional polyhedron
n+1

is characterized by a sequence of invariants: the volume, Dehn’s

symbol, secondary Dehn’s symbol, and so on, taking values in more and
more complicated tensor products (k-th Dehn symbol involves a summation
over (n — 2k)-dimensional faces. In particular, for one- and two-dimensional
polyhedra (segments and polygons) only the “volume” (the length and the
area) counts; in dimensions 3 and 4 we also have Dehn’s symbol), and so on.

If you want to know more about this, you can read, in addition to the
popular book of Boltianskii, the article of Cartier in Proceedings of the Bour-
baki Seminar [2]. But I am not sure that it has been ever translated from
French into English, so if you read this article, you have a chance to study a
beautiful language, in addition to a beautiful geometry.

13



References

1]

V. G. Boltianskii, Hilbert’s Third Problem, Scripta Series in Math.,
John Wiley and Sons, Wash., N.Y., 1978

P. Cartier, Decomposition des polyédres: le point sur le troisiéme
probléme de Hilbert, Astérisque, 133—134 (1986), 261-288

M. Dehn, Uber den Rauminhalt, Math. Ann., 40 (1902), 465-478

J.-P. Sydler, Conditions nécessaires et suffisantes pour I'equivalence
des polyédres de Despace euclidien a trois dimension, Comment.
Math. Helv., 40 (1965), 43-80

Mathematical developments arising from Hilbert’s problems, F.
Browder, ed., Proc. Symp., Pure Math., XXVIII (1976)

14



