
BERKELEY MATH CIRCLE. 10.12.03.

Alexander Givental.

PENTAGON, ICOSAHEDRON, ... WHAT’S NEXT?

Part I

Homework problems.

Problem 1. Let A be the area of a regular pentagon. Continue the sides
of the pentagon to form a larger, star-shaped region and compute the added
area.

Problem 2. Consider the space Rn of all real-valued functions f :
{1, 2, ..., n} → R on the finite set {1, 2, ..., n}. Define the distance between
two such functions, f and g, by the formula:

d(f, g) = maxk=1,2,...,n |f(k) − g(k)|.

Show that the distance satisfies the triangle inequality:

d(f, h) ≤ d(f, g) + d(g, h) for any f, g, h.

Define the “unit ball” with respect to this distance and describe it explicitly.
Do the same — for the distance defined by another formula:

d(f, g) = |f(1) − g(1)| + ... + |f(n) − g(n)|.

Can you define the notion of distance between functions when the finite
domain set is replaced by the continuous interval I = [0, 1] of real numbers?

Problem 3. Convince yourself 1 that any transformation of the Eu-
clidean 3D-space which preserves all distances between points (with the usual
concept of distance!) and preserves the origin is either a rotation about an
axis passing through the origin or the composition of such a rotation with the
central symmetry about the origin. Check that central symmetry commutes
with all the other transformations. Show that the composition of reflections
in two diffrent mirrors is a rotation. How about the composition of three
different mirror reflections?

1I don’t know a rigorous elementary proof of this statement.
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Problem 4. Let σ be a permutation on the set {1, 2, ..., n} (i.e. an
invertible function from this set to itself). Define the length l(σ) of the
permutation as the number of pairs i < j such that σ(i) > σ(j).

(a) What is the maximal possible value of the length?
(b) Compose σ with a transposition τab (i.e. the swap of two indices a

and b) of two nearby indices a = i, b = i + 1 and show that

l(σ · τ ) = l(σ)± 1.

What does the sign ± in this formula depend on?
(c) Prove that any permutation of odd (even) length can be obtained

as the composition of transpositions whose number will be necessarily odd
(respectively even).

(d) Show that the minimal number of transpositions needed for repre-
senting σ equals l(σ).

(e) Define the sign of a pemutation by sign(σ) = (−1)l(σ) and prove that
for any permutations

sign(σ1 · σ2) = sign(σ1) sign(σ2).

Problem 5. Let Sn denote the group 2 of all permutations on {1, ..., n},
the operation being composition of permutations.

(a) Construct a homomorphism 3 of S4 onto S3.
Hint: think of S4 as the symmetry group of the tetrahedron.
(b) Identify the rotation group of the cube with S4 (and give another

solution to part (a)).
Hint: consider the action of the symmetry group of the cube on the four

diagonals and find out which of the symmetries preserve all the diagonals.
(c) Identify the rotation group of the dodecahedron with the group of all

even permutations on {1, 2, 3, 4, 5}.

2By definition, a group is a set G equipped with an operation a, b 7→ ab satisfying
(i) ab ∈ G for any a, b ∈ G,
(ii) (ab)c = a(bc),
(iii) there exists a unique e ∈ G such that ae = ea = a for all a ∈ G,
(iv) for any a ∈ G there exists a unique a−1 ∈ G such that aa−1 = e = a−1a.
3A group homomorphism between two groups is a function G → G′ which respects the

operations, i.e. if a 7→ a′ and b 7→ b′ then ab 7→ a′b′.
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Hint: examine the way the symmetries of the dodecahedron act on the
five cubes formed by the diagonals in the dodecahedron’s faces.

Problem 6. Recall that the n-dimensional simplex is defined as the set
of all points in the n + 1-dimensional space with coordinates x0, x1, ..., xn

satisfying

x0 + x1 + ... + xn = 1, x0 ≥ 0, x1 ≥ 0, ..., xn ≥ 0.

The n-dimensional cube is defined as the set of points in the n-dimensional
space with coordinates x1, ..., xn satisfying the inequaltities −1 ≤ xi ≤ 1 for
each i = 1, ..., n.

(a) Show that for n = 1, 2, 3 the n-dimensional simplex is respectively the
segment, the regular triangle, the tetrahedron.

(b) Show that all k-dimensional faces (i.e. vertices, edges, etc.) of the
n-dimensional simplex are simplexes of dimension k = 0, 1, ..., n− 1 and find
the number of such faces for each k.

Problem 7. The n-dimensional cube is defined as the set of points in
the n-dimensional space with coordinates x1, ..., xn satisfying the inequaltities
−1 ≤ xi ≤ 1 for each i = 1, ..., n.

(a) Formulate and solve the version Problem 5 with the simplexes replaces
by the cubes.

(b) Show that pemutations of coordinates, changes of signs of one or
several coordinates or compositions of these transformations preserve the n-
dimensional cube. Find the number of elements in the symmetry group of
the n-dimensional cube formed by these transformations.

(c) Paint black and white the vertices (±1, ...,±1) of the n-dimensional
cube which have respectively even and odd number of −1’s. How many
transformations from the symmetry group of the cube keep black and white
vertices apart?

(d) Show that for n odd the black and white vertices form two polyhedra
centrally symmetric to each other. What are the polyherda in the case n = 3?

(e) Show that for n even the black (respectively white) vertices form
a cenntrally symmetric polyhedron. Study the case n = 4 and show that
the black polyhedron can be identified with the 4-dimensional version of the
octahedron (defined as the polyhedron formed by centers of a cube’s faces).
Is the same true for the polyhedron formed by the white vertices?
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