LINEAR RECURSIVE SEQUENCES

BJORN POONEN

1. Sequences

A sequence is an infinite list of numbers, like

\(1, 2, 4, 8, 16, 32, \ldots \)\n
The numbers in the sequence are called its terms. The general form of a sequence is

\(a_1, a_2, a_3, \ldots \)

where \(a_n \) is the \(n \)-th term of the sequence. In the example (1) above, \(a_1 = 1, a_2 = 2, a_3 = 4, \) and so on.

The notations \(\{a_n\} \) or \(\{a_n\}_{n=1}^{\infty} \) are abbreviations for

\(a_1, a_2, a_3, \ldots \)

Occasionally the indexing of the terms will start with something other than 1. For example, \(\{a_n\}_{n=0}^{\infty} \) would mean

\(a_0, a_1, a_2, \ldots \)

(In this case \(a_n \) would be the \((n + 1)\)-st term.)

For some sequences, it is possible to give an explicit formula for \(a_n \); this means that \(a_n \) is expressed as a function of \(n \). For instance, the sequence (1) above can be described by the explicit formula \(a_n = 2^{n-1} \).

2. Recursive definitions

An alternative way to describe a sequence is to list a few terms and to give a rule for computing the rest of the sequence. Our example (1) above can be described by the starting value \(a_1 = 1 \) and the rule \(a_{n+1} = 2a_n \) for integers \(n \geq 1 \). Starting from \(a_1 = 1 \), the rule implies that

\[
\begin{align*}
a_2 &= 2a_1 = 2(1) = 2 \\
a_3 &= 2a_2 = 2(2) = 4 \\
a_4 &= 2a_3 = 2(4) = 8,
\end{align*}
\]

and so on; each term in the sequence can be computed recursively in terms of the terms previously computed. A rule such as this giving the next term in terms of earlier terms is also called a recurrence relation (or simply recurrence).

Date: October 11, 1998.
3. Linear recursive sequences

A sequence \(\{a_n\} \) is said to satisfy the \textit{linear recurrence} with coefficients \(c_k, c_{k-1}, \ldots, c_0 \) if
\[
c_k a_{n+k} + c_{k-1} a_{n+k-1} + \cdots + c_1 a_{n+1} + c_0 a_n = 0
\]
holds for all integers \(n \) for which this makes sense. (If the sequence starts with \(a_1 \), then this means for \(n \geq 1 \).) The integer \(k \) is called the \textit{order} of the linear recurrence.

A \textit{linear recursive sequence} is a sequence of numbers \(a_1, a_2, a_3, \ldots \) satisfying some linear recurrence as above with \(c_k \neq 0 \) and \(c_0 \neq 0 \). For example, the sequence (1) satisfies
\[
a_{n+1} - 2a_n = 0
\]
for all integers \(n \geq 1 \), so it is a linear recursive sequence satisfying a recurrence of order 1, with \(c_1 = 1 \) and \(c_0 = -2 \).

Requiring \(c_k \neq 0 \) guarantees that the linear recurrence can be used to express \(a_{n+k} \) as a linear combination of earlier terms:
\[
a_{n+k} = -\frac{c_{k-1}}{c_k} a_{n+k-1} - \cdots - \frac{c_1}{c_k} a_{n+1} - \frac{c_0}{c_k} a_n.
\]
The requirement \(c_0 \neq 0 \) lets one express \(a_n \) as a linear combination of later terms:
\[
a_n = -\frac{c_k}{c_0} a_{n+k} - \frac{c_{k-1}}{c_0} a_{n+k-1} - \cdots - \frac{c_1}{c_0} a_{n+1}.
\]
This lets one define \(a_0, a_{-1}, \) and so on, to obtain a \textit{doubly infinite sequence}
\[
\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots
\]
that now satisfies the same linear recurrence for all integers \(n \), positive or negative.

4. Characteristic polynomials

The \textit{characteristic polynomial} of a linear recurrence
\[
c_k a_{n+k} + c_{k-1} a_{n+k-1} + \cdots + c_1 a_{n+1} + c_0 a_n = 0
\]
is defined to be the polynomial
\[
c_k x^k + c_{k-1} x^{k-1} + \cdots + c_1 x + c_0.
\]
For example, the characteristic polynomial of the recurrence \(a_{n+1} - 2a_n = 0 \) satisfied by the sequence (1) is \(x - 2 \).

Here is another example: the famous \textit{Fibonacci sequence}
\[
\{F_n\}_{n=0}^{\infty} = 0, 1, 1, 2, 3, 5, 8, 13, \ldots
\]
which can be described by the starting values \(F_0 = 0, F_1 = 1 \) and the recurrence relation
\[
F_n = F_{n-1} + F_{n-2} \quad \text{for all } n \geq 2.
\]
To find the characteristic polynomial, we first need to rewrite the recurrence relation in the form (2). The relation (3) is equivalent to
\[
F_{n+2} = F_{n+1} + F_n \quad \text{for all } n \geq 0.
\]
Rewriting it as
\[
F_{n+2} - F_{n+1} - F_n = 0
\]
shows that \(\{F_n\} \) is a linear recursive sequence satisfying a recurrence of order 2, with \(c_2 = 1, c_1 = -1, \) and \(c_0 = -1 \). The characteristic polynomial is \(x^2 - x - 1 \).
5. IDEALS AND MINIMAL CHARACTERISTIC POLYNOMIALS

The same sequence can satisfy many different linear recurrences. For example, doubling (5) shows the Fibonacci sequence also satisfies
\[2F_{n+2} - 2F_{n+1} - 2F_n = 0, \]
which is a linear recurrence with characteristic polynomial \(2x^2 - 2x - 2 \). It also satisfies
\[F_{n+3} - F_{n+2} - F_{n+1} = 0, \]
and adding these two relations, we find that \(\{F_n\} \) also satisfies
\[F_{n+3} + F_{n+2} - 3F_{n+1} - 2F_n = 0 \]
which has characteristic polynomial \(x^3 + x^2 - 3x - 2 = (x + 2)(x^2 - x - 1) \).

Now consider an arbitrary sequence \(\{a_n\} \). Let \(I \) be the set of characteristic polynomials of all linear recurrences satisfied by \(\{a_n\} \). Then

(a) If \(f(x) \in I \) and \(g(x) \in I \) then \(f(x) + g(x) \in I \).
(b) If \(f(x) \in I \) and \(h(x) \) is any polynomial, then \(h(x)f(x) \in I \).

In general, a nonempty set \(I \) of polynomials satisfying (a) and (b) is called an ideal.

Fact from algebra: Let \(I \) be an ideal of polynomials. Then either \(I = \{0\} \) or else there is a unique monic polynomial \(f(x) \in I \) such that
\[I = \text{the set of polynomial multiples of } f(x) = \{ h(x)f(x) \mid h(x) \text{ is a polynomial} \}. \]
(A polynomial is monic if the coefficient of the highest power of \(x \) is 1.)

This fact, applied to the ideal of characteristic polynomials of a linear recursive sequence \(\{a_n\} \) shows that there is always a minimal characteristic polynomial \(f(x) \), which is the monic polynomial of lowest degree in \(I \). It is the characteristic polynomial of the lowest order non-trivial linear recurrence satisfied by \(\{a_n\} \). The characteristic polynomial of any other linear recurrence satisfied by \(\{a_n\} \) is a polynomial multiple of \(f(x) \).

The order of a linear recursive sequence \(\{a_n\} \) is defined to be the lowest order among all (nontrivial) linear recurrences satisfied by \(\{a_n\} \). The order also equals the degree of the minimal characteristic polynomial. For example, as we showed above, \(\{F_n\} \) satisfies
\[F_{n+3} + F_{n+2} - 3F_{n+1} - 2F_n = 0, \]
but we also know that
\[F_{n+2} - F_{n+1} - F_n = 0, \]
and it is easy to show that \(\{F_n\} \) cannot satisfy a linear recurrence of order less than 2, so \(\{F_n\} \) is a linear recursive sequence of order 2, with minimal characteristic polynomial \(x^2 - x - 1 \).

6. THE MAIN THEOREM

Theorem 1. Let \(f(x) = c_kx^k + \cdots + c_0 \) be a polynomial with \(c_k \neq 0 \) and \(c_0 \neq 0 \). Factor \(f(x) \) over the complex numbers as
\[f(x) = c_k(x - r_1)^{m_1}(x - r_2)^{m_2} \cdots (x - r_\ell)^{m_\ell}, \]
where \(r_1, r_2, \ldots, r_\ell \) are distinct nonzero complex numbers, and \(m_1, m_2, \ldots, m_\ell \) are positive integers. Then a sequence \(\{a_n\} \) satisfies the linear recurrence with characteristic polynomial \(f(x) \) if and only if there exist polynomials \(g_1(n), g_2(n), \ldots, g_\ell(n) \) with \(\deg g_i \leq m_i - 1 \) for \(i = 1, 2, \ldots, \ell \) such that

\[
a_n = g_1(n)r_1^n + \cdots + g_\ell(n)r_\ell^n \quad \text{for all } n.
\]

Here is an important special case.

Corollary 2. Suppose in addition that \(f(x) \) has no repeated factors; in other words suppose that \(m_1 = m_2 = \cdots = m_\ell = 1 \). Then \(f(x) = c_k(x - r_1)(x - r_2)\cdots(x - r_\ell) \) where \(r_1, r_2, \ldots, r_\ell \) are distinct nonzero complex numbers (the roots of \(f \)). Then \(\{a_n\} \) satisfies the linear recurrence with characteristic polynomial \(f(x) \) if and only if there exist constants \(B_1, B_2, \ldots, B_\ell \) (not depending on \(n \)) such that

\[
a_n = B_1 r_1^n + \cdots + B_\ell r_\ell^n \quad \text{for all } n.
\]

7. **Example: solving a linear recurrence**

Suppose we want to find an explicit formula for the sequence \(\{a_n\} \) satisfying \(a_0 = 1 \), \(a_1 = 4 \), and

\[
a_{n+2} = \frac{a_{n+1} + a_n}{2} \quad \text{for } n \geq 0.
\]

Since \(\{a_n\} \) satisfies a linear recurrence with characteristic polynomial \(x^2 - \frac{1}{2}x - \frac{1}{2} = (x - 1)(x + \frac{1}{2}) \), we know that there exist constants \(A \) and \(B \) such that

\[
a_n = A(1)^n + B \left(-\frac{1}{2} \right)^n
\]

for all \(n \). The formula (7) is called the *general solution* to the linear recurrence (6). To find the *particular solution* with the correct values of \(A \) and \(B \), we use the known values of \(a_0 \) and \(a_1 \):

\[
1 = a_0 = A(1)^0 + B \left(-\frac{1}{2} \right)^0 = A + B
\]

\[
4 = a_1 = A(1)^1 + B \left(-\frac{1}{2} \right)^1 = A - B/2.
\]

Solving this system of equations yields \(A = 3 \) and \(B = -2 \). Thus the particular solution is

\[
a_n = 3 - 2 \left(-\frac{1}{2} \right)^n.
\]

(As a check, one can try plugging in \(n = 0 \) or \(n = 1 \).)

8. **Example: the formula for the Fibonacci sequence**

As we worked out earlier, \(\{F_n\} \) satisfies a linear recurrence with characteristic polynomial \(x^2 - x - 1 \). By the quadratic formula, this factors as \((x - \alpha)(x - \beta) \) where \(\alpha = (1 + \sqrt{5})/2 \) is the golden ratio, and \(\beta = (1 - \sqrt{5})/2 \). The main theorem implies that there are constants \(A \) and \(B \) such that

\[
F_n = A\alpha^n + B\beta^n
\]
for all \(n \). Using \(F_0 = 0 \) and \(F_1 = 1 \) we obtain
\[
0 = A + B, \quad 1 = A\alpha + B\beta.
\]
Solving for \(A \) and \(B \) yields \(A = 1/(\alpha - \beta) \) and \(B = -1/(\alpha - \beta) \), so
\[
F_n = \alpha^n - \beta^n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]
\]
for all \(n \).

9. Example: finding a linear recurrence from an explicit formula

Let \(a_n = (n + 2^n)F_n \), where \(\{F_n\} \) is the Fibonacci sequence. Then by the explicit formula for \(F_n \),
\[
a_n = (n + 2^n) \left(\frac{\alpha^n - \beta^n}{\alpha - \beta} \right) = \left[\left(\frac{1}{\alpha - \beta} \right) n \right] \alpha^n + \left[\left(\frac{-1}{\alpha - \beta} \right) n \right] \beta^n + \left(\frac{1}{\alpha - \beta} \right) (2\alpha)^n + \left(\frac{-1}{\alpha - \beta} \right) (2\beta)^n.
\]
By Theorem 1, \(\{a_n\} \) satisfies a linear recurrence with characteristic polynomial
\[
(x - \alpha)^2(x - \beta)^2(x - 2\alpha)(x - 2\beta) = (x^2 - x - 1)^2 \left[x^2 - 2(\alpha + \beta) + 4\alpha\beta \right]
= (x^2 - x - 1)^2(x^2 - 2x - 4)
= x^6 - 4x^5 - x^4 + 12x^3 + x^2 - 10x + 4,
\]
where we have used the identity \(x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - x - 1 \) to compute \(\alpha + \beta \) and \(\alpha\beta \). In other words,
\[
a_{n+6} - 4a_{n+5} - a_{n+4} + 12a_{n+3} + a_{n+2} - 10a_{n+1} + 4a_n = 0
\]
for all \(n \). In fact, we have found the minimal characteristic polynomial, since if the actual minimal characteristic polynomial were a proper divisor of \((x^2 - x - 1)^2(x^2 - 2x - 4) \), then according to Theorem 1, the explicit formula for \(a_n \) would have had a different, simpler form.

10. Inhomogeneous recurrence relations

Suppose we wanted an explicit formula for a sequence \(\{a_n\} \) satisfying \(a_0 = 0 \), and
\[
a_{n+1} - 2a_n = F_n \quad \text{for} \quad n \geq 0,
\]
where \(\{F_n\} \) is the Fibonacci sequence as usual. This is not a linear recurrence in the sense we have been talking about (because of the \(F_n \) on the right hand side instead of 0), so our usual method does not work. A recurrence of this type, linear except for a function of \(n \) on the right hand side, is called an inhomogeneous recurrence.

We can solve inhomogeneous recurrences explicitly when the right hand side is itself a linear recursive sequence. In our example, \(\{a_n\} \) also satisfies
\[
a_{n+2} - 2a_{n+1} = F_{n+1}
\]
and
\[
a_{n+3} - 2a_{n+2} = F_{n+2}.
\]
Subtracting (8) and (9) from (10) yields
\[a_{n+3} - 3a_{n+2} + a_{n+1} + 2a_n = F_{n+2} - F_{n+1} - F_n = 0. \]
Thus \(\{a_n\} \) is a linear recursive sequence after all! The characteristic polynomial of this new linear recurrence is \(x^3 - 3x^2 + x + 2 = (x - 2)(x^2 - x - 1) \), so by Theorem 1, there exist constants \(A, B, C \) such that
\[a_n = A \cdot 2^n + B\alpha^n + C\beta^n \]
for all \(n \). Now we can use \(a_0 = 0 \), and the values \(a_1 = 0 \) and \(a_2 = 1 \) obtained from (8) to determine \(A, B, C \). After some work, one finds \(A = 1, B = -\alpha^2/\alpha - \beta \), and \(C = \beta^2/(\alpha - \beta) \), so \(a_n = 2^n - F_{n+2} \).

If \(\{x_n\} \) is any other sequence satisfying
\[x_{n+1} - 2x_n = F_n \]
but not necessarily \(x_0 = 0 \), then subtracting (8) from (11) shows that the sequence \(\{y_n\} \) defined by \(y_n = x_n - a_n \) satisfies \(y_{n+1} - 2y_n = 0 \) for all \(n \), so \(y_n = D \cdot 2^n \) for some number \(D \). Hence the general solution of (11) has the form
\[x_n = 2^n - F_{n+2} + D \cdot 2^n, \]
or more simply,
\[x_n = E \cdot 2^n - F_{n+2}, \]
where \(E \) is some constant.

In general, this sort of argument proves the following.

Theorem 3. Let \(\{b_n\} \) be a linear recursive sequence satisfying a recurrence with characteristic polynomial \(f(x) \). Let \(g(x) = c_kx^k + c_{k-1}x^{k-1} + \cdots + c_1x + c_0 \) be a polynomial. Then every solution \(\{x_n\} \) to the inhomogeneous recurrence
\[c_kx_{n+k} + c_{k-1}x_{n+k-1} + \cdots + c_1x_{n+1} + c_0x_n = b_n \]
also satisfies a linear recurrence with characteristic polynomial \(f(x)g(x) \). Moreover, if \(\{x_n\} = \{a_n\} \) is one particular solution to (12), then all solutions have the form \(x_n = a_n + y_n \), where \(\{y_n\} \) ranges over the solutions of the linear recurrence
\[c_ky_{n+k} + c_{k-1}y_{n+k-1} + \cdots + c_1y_{n+1} + c_0y_n = 0. \]

11. The Mahler-Lech theorem

Here is a deep theorem about linear recursive sequences:

Theorem 4 (Mahler-Lech theorem). Let \(\{a_n\} \) be a linear recursive sequence of complex numbers, and let \(c \) be a complex number. Then there exists a finite (possibly empty) list of arithmetic progressions \(T_1, T_2, \ldots T_m \) and a finite (possibly empty) set \(S \) of integers such that
\[\{ n \mid a_n = c \} = S \cup T_1 \cup T_2 \cup \cdots \cup T_m. \]

Warning: don’t try to prove this at home! This is very hard to prove. The proof uses “\(p \)-adic numbers.”
12. Problems

There are a lot of problems here. Just do the ones that interest you.

(1) If the Fibonacci sequence is extended to a doubly infinite sequence satisfying the same linear recurrence, then what will F_{-4} be? (Is it easier to do this using the recurrence, or using the explicit formula?)

(2) Find the smallest degree polynomial that could be the minimal characteristic polynomial of a sequence that begins

$$2, 5, 18, 67, 250, 933, \ldots$$

Assuming that the sequence is a linear recursive sequence with this characteristic polynomial, find an explicit formula for the n-th term.

(3) Suppose that $a_n = n^2 + 3n + 7$ for $n \geq 1$. Prove that $\{a_n\}$ is a linear recursive sequence, and find its minimal characteristic polynomial.

(4) Suppose $a_1 = a_2 = a_3 = 1$, $a_4 = 3$, and $a_{n+4} = 3a_{n+2} - 2a_n$ for $n \geq 1$. Prove that $a_n = 1$ if and only if n is odd or $n = 2$. (This is an instance of the Mahler-Lech theorem: for this sequence, one would take $S = \{2\}$ and $T_1 = \{1, 3, 5, 7, \ldots \}$.)

(5) Suppose $a_0 = 2$, $a_1 = 5$, and $a_{n+2} = (a_{n+1})^2(a_n)^3$ for $n \geq 0$. (This is a recurrence relation, but not a linear recurrence relation.) Find an explicit formula for a_n.

(6) Suppose $\{a_n\}$ is a sequence such that $a_{n+2} = a_{n+1} - a_n$ for all $n \geq 1$. Given that $a_{38} = 7$ and $a_{55} = 3$, find a_1. (Hint: it is possible to solve this problem with very little calculation.)

(7) Let θ be a fixed real number, and let $a_n = \cos(n\theta)$ for integers $n \geq 1$. Prove that $\{a_n\}$ is a linear recursive sequence, and find the minimal characteristic polynomial. (Hint: if you know the definition of $\cos x$ in terms of complex exponentials, use that. Otherwise, use the sum-to-product rule for the sum of cosines $\cos(n\theta) + \cos((n+2)\theta)$. For most but not all θ, the degree of the minimal characteristic polynomial will be 2.)

(8) Give an example of a sequence that is not a linear recursive sequence, and prove that it is not one.

(9) Given a finite set S of positive integers, show that there exists a linear recursive sequence

$$a_1, a_2, a_3, \ldots$$
such that $\{n \mid a_n = 0\} = S$.

(10) A student tosses a fair coin and scores one point for each head that turns up, and two points for each tail. Prove that the probability of the student scoring n points at some time in a sequence of n tosses is $\frac{1}{3} \left(2 + \left(-\frac{1}{3}\right)^n\right)$.

(11) Let F_n denote the n-th Fibonacci number. Let $a_n = (F_n)^2$. Prove that a_1, a_2, a_3, \ldots is a linear recursive sequence, and find its minimal characteristic polynomial.

(12) Prove the “fact from algebra” mentioned above in Section 5. (Hint: if $I \neq \{0\}$, pick a nonzero polynomial in I of smallest degree, and multiply it by a constant to get a monic polynomial $f(x)$. Use long division of polynomials to show that anything else in I is a polynomial multiple of $f(x)$.)

(13) Suppose that a_1, a_2, \ldots is a linear recursive sequence. For $n \geq 1$, let $s_n = a_1 + a_2 + \cdots + a_n$. Prove that $\{s_n\}$ is a linear recursive sequence.

(14) Suppose $\{a_n\}$ and $\{b_n\}$ are linear recursive sequences. Let $c_n = a_n + b_n$ and $d_n = a_n b_n$ for $n \geq 1$.

(a) Prove that $\{c_n\}$ and $\{d_n\}$ also are linear recursive sequences.
(b) Suppose that the minimal characteristic polynomials for \(\{a_n\} \) and \(\{b_n\} \) are \(x^2 - x - 2 \) and \(x^2 - 5x + 6 \), respectively. What are the possibilities for the minimal characteristic polynomials of \(\{c_n\} \) and \(\{d_n\} \)?

(15) Suppose that \(\{a_n\} \) and \(\{b_n\} \) are linear recursive sequences. Prove that
\[
a_1, b_1, a_2, b_2, a_3, b_3, \ldots
\]
also is a linear recursive sequence.

(16) Use the Mahler-Lech theorem to prove the following generalization. Let \(\{a_n\} \) be a linear recursive sequence of complex numbers, and let \(p(x) \) be a polynomial. Then there exists a finite (possibly empty) list of arithmetic progressions \(T_1, T_2, \ldots, T_m \) and a finite (possibly empty) set \(S \) of integers such that
\[
\{ n \mid a_n = p(n) \} = S \cup T_1 \cup T_2 \cup \cdots \cup T_m.
\]
(Hint: let \(b_n = a_n - p(n) \).)

(17) (1973 USAMO, no. 2) Let \(\{X_n\} \) and \(\{Y_n\} \) denote two sequences of integers defined as follows:
\[
X_0 = 1, X_1 = 1, X_{n+1} = X_n + 2X_{n-1} \quad (n = 1, 2, 3, \ldots),
\]
\[
Y_0 = 1, Y_1 = 7, Y_{n+1} = 2Y_n + 3Y_{n-1} \quad (n = 1, 2, 3, \ldots).
\]
Thus, the first few terms of the sequences are:
\[
X : 1, 1, 3, 5, 11, 21, \ldots,
\]
\[
Y : 1, 7, 17, 55, 161, 487, \ldots.
\]
Prove that, except for the “1,” there is no term which occurs in both sequences.

(18) (1963 IMO, no. 4) Find all solutions \(x_1, x_2, x_3, x_4, x_5 \) to the system
\[
x_5 + x_2 = yx_1
\]
\[
x_1 + x_3 = yx_2
\]
\[
x_2 + x_4 = yx_3
\]
\[
x_3 + x_5 = yx_4
\]
\[
x_4 + x_1 = yx_5,
\]
where \(y \) is a parameter. (Hint: define \(x_0 = x_1, x_7 = x_2 \), etc., and find two different linear recurrences satisfied by \(\{x_n\} \).)

(19) (1967 IMO, no. 6) In a sports contest, there were \(m \) medals awarded on \(n \) successive days \((n > 1) \). On the first day, one medal and \(\frac{1}{7} \) of the remaining \(m - 1 \) medals were awarded. On the second day, two medals and \(\frac{1}{7} \) of the now remaining medals were awarded; and so on. On the \(n \)-th and last day, the remaining \(n \) medals were awarded. How many days did the contest last, and how many medals were awarded altogether?

(20) (1974 IMO, no. 3) Prove that the number \(\sum_{k=0}^{n} \binom{2n+1}{k+1} 2^{3k} \) is not divisible by 5 for any integer \(n \geq 0 \).

(21) (1980 USAMO, no. 3) Let \(F_r = x^r \sin(rA) + y^r \sin(rB) + z^r \sin(rC) \), where \(x, y, z, A, B, C \) are real and \(A + B + C \) is an integral multiple of \(\pi \). Prove that if \(F_1 = F_2 = 0 \), then \(F_r = 0 \) for all positive integral \(r \).