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1 History and Sources

Archimedes lived from 287 BC until he was killed by a Roman soldier in 212 BC. He is
usually considered to be one of the three greatest mathematicians of all time, the other two
being Newton and Gauss. The extant works of Archimedes are readily available today in Heath
[1] and Dijksterhuis [2]. Both contain the works with extensive notes and historical information.
They both can be somewhat difficult to plow through at times. To ease the burden, a new book
by Sherman Stein [3] came out in 1999 that is accessible to a much broader audience. It fact the
only prerequisite is high school algebra and geometry. A partial listing of the works that have
not been lost is as follows : On the Equilibrium of Planes, Quadrature of the Parabola, On the
Sphere and Cylinder, On Spirals, On Conoids and Spheroids, On Floating Bodies, Measurement
of a Circle, The Sand-reckoner, and The Book of Lemmas. In 1906, a palimpsest was found
by Heiberg which contained earlier copies of some of Archimedes’ work, but more importantly
it contained two works which had been lost for 1000 years. One of them disclosed the method
that Archimedes employed to arrive at many of his conclusions, the other a treatise On Floating
Bodies had no surviving copy in Greek. A third item was a short discussion of a puzzle called
the Stomachian. Heiberg was not allowed to take the palimpsest, but was able to photograph
the pages. From these photographs he made the best translation he could of the document.
Soon afterward, the world was at war and the palimpsest disappeared. It surfaced six years ago
and was auctioned for $2 million dollars. The annonymous buyer has loaned it to a museum
to be restored and studied. Many new discoveries have already been reported. In September,
NOVA presented an hour long program about Archimedes and the palimpsest entitled Infinite
Secrets. [4]

2 Calculation of π

Archimedes calculates bounds for π by inscribing and circumscribing polygons of increasing
size in a circle. He begins with a hexagon and successively doubles the number of sides until he
reaches a 96-gon. He does this without recourse to the decimal system, using very good ratios
to approximate the irrationals that appear. Since he only gives the ratios without giving any
indication of his method for obtaining them, this has led to a great deal of speculation about the
issue. There is also some evidence that this was not his final word on the subject and that he
had calculated a more accurate value of π. Knorr[5] It can also be shown that using Archimedes’
data from the 96-gon computation, the value of π to eighteen decimal places. Phillips [6]
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In Euclid’s Elements, Book XII, Proposition 2, following the method of Eudoxus, it is proved
that Circles are to one another as the squares on their diameters. Proposition 1 in Archimedes,
following the method of Eudoxus, shows that the area of a circle is equal to the area of a
right triangle with one of the legs equal to the radius and the other equal to the circumference.
With Euclid XII.2, this implies the ratio of the circumference of a circle to its diameter is a
constant and Archimedes now sets out to find rational bounds for this number. The first thing
Archimedes needed was a set of bounds for

√
3. Without explanation Archimedes just writes

265

153
<

√
3 <

1351

780
. In the September issue of Mathematics Teacher, I happened to see a letter

from a reader, Ken Seidel, of Redwood City which, I believe, provides some insight. He points
to an interesting square root agorithm related to continued fractions:

√
a2 + b = a +

b

2a +
b

2a +
b

2a + · · ·

See Heath [1] for a discussion of the various methods that historians have put forward. Now
Archimedes, using the angle bisector theorem, Euclid VI.3, develops a method of finding the
ratio of the side of a 2n-gon to the diameter of the inscribed circle from the ratio of the side
of an n-gon to the diameter. After four interations he multiplies the bounding ratio by 96 to
get an upper bound for pi. He then develops a method of find the ratio of the side of a 2n-gon
to the diameter of the circumscribing circle from the ratio of the n-gon to the diameter. Again
after After four interations he multiplies the bounding ratio by 96 to get an lower bound for π.

The final result being that 3
10

71
< π < 3

1

7
. Heron reports that Archimedes improved on these

results in a lost work Plinthides and Cylinders, but the values given are not correct, in fact the
lower bound was actually greater than π. The historian Wilbur Knorr put forth the hypothesis
that Archimedes would not blunder so greatly, and used the lower bound as an upper bound.
The other upper bound which was much too large was found to have a denominator with two
digits incorrect, possibly through scribal error. When corrected the the lower and upper bounds
reduced by continued fractions yielded 3 + 1/(7 + 1/15) and 3 + 1/(7 + 1/17), approximately
3.141509 and 3.141666. This certainly suggests looking at the continued fraction 3 + 1(7 +1/16)
= 355/113 ≈ 3.141593. This is the famous ratio used by the Chinese mathematicians in the
fifth and sixth centuries. See Knorr[5] for more about this.

Some Problems

1. Show that the side of a 96−gon inscribed in a circle with radius one is equal to
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√
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√
3

2. Let pn and Pn denote, respectively, half the perimeters of the inscribed and circumscribed
polygons with n sides in a circle of radius 1. Use the techniques of Archimedes to show

p2
2n =

2p2
n

1 +
√

1 − p2
n/n

2
, P2n =

2Pn
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and Pn =
pn√
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2
.
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3 The Cattle Problem

From Dijksterhuis [2] The cows and bulls of Helios are grazing in the island of Sicily in four
herds of different colors: white, black, dappled and yellow. If we call the number of bulls in
these herds, respectively, W, Z, P, B and the number of cows similarly w, z,p,b, the following
relations between the numbers are given:

W = (
1

2
+

1

3
)Z + B

Z = (
1

4
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1

5
)P + B

P = (
1

6
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7
)W + B

w = (
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4
)(Z + z)

z = (
1
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5
)(P + p)

p = (
1

5
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6
)(B + b)

b = (
1

6
+
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7
)(W + w)

In addition, it required that W + Z be a perfect square, n2, and P + B be a triangular number,
m(m+1)

2
. For a discussion of the solution to the first seven equations see the first problem in 100

Great Problems of Elementary Mathematics by Heinrich Dörrie [7]. Gabriel Carroll mentioned
to me that this book was one of the first mathematics books he read. A “more complete”
formulation of the problem was discovered in a Greek manuscript in 1773 in the Wolfenbüttel
library. A translation from the Greek to English (via German, since Dörrie’s book was originally
in German), in poetic form, made up of twenty-two distichs, is also included along with some
other historical comments a general discussion of the solution to the complete problem. If you
go searching, you will find problem three in this book is a problem on cows and fields by Newton,
but it is not nearly as interesting. However, the book is a goldmine of interesting problems in
mathematics by the great mathematicians of the past, with very succinctly written solutions.

In Heath [1], an alternate interpretation of the bulls forming a “square” came about by
considering bulls to be longer than they are wide, and so seeking an answer where the bulls are
closely packed to form a “square figure”, rather than requiring the number of bulls, W + Z, to
be a perfect square. This problem is easier and is known as Wurm’s Problem. It is solved in
Heath. Heath then goes on to discuss the solution to the complete problem which leads to the
Pellian equation t2 − 4729494u2 = 1. This type of problem was discussed at the Berkeley Math
Circle in the past. For a nice introduction via the discovery method, see the Power Round of
the Polya Contest held at Gunn High School[8] (October 30, 1999). Unfortunately, Heath also
has the incorrect fourth digit for W . This may be where Dijksterhuis got his information, since
he has the same error.

In 1889, A.H. Bell, a civil engineer, and two friends formed the Hillsboro, Illinois, Math-
ematical Club and started the computation of the solution to the complete problem. After
four years they computed the first 32 left-hand digits and the last 12 right-hand digits for each
variety of bulls and cows, as well as the total number of cattle in the herd. This is detailed in
Albert H. Beiler’s Recreations in the Theory of Numbers [9]. However, there is a misprint in the
book. The value printed for the variable t is actually the value of t2. A truncated version of the
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problem in prose is also given. The discussion of the problem appears in the chapter entitled
The Pellian where you will find out why Pell, who had almost nothing to do with solving this
type of equation has his name gloriously attached to it. There is also a fairly clear presentation
of the method of solution via continued fractions.

The first complete listing of the solutions to the problem was given in 1965 by the Cana-
dian mathematicians H.C. Williams, R.A. German, and C.R. Zarnke, who computed it using
a computer. The computer printout is on deposit among Unpublished Mathematical Tables
at the University of Maryland. This showed that the last two of Bell’s thirty-two left-hand
digits were incorrect. In 1980, Harry L. Nelson of the Lawrence Livermore National Laboratory
recast the problem in code suitable for exercising the newly delivered CRAY-1 computer. The
computation of the solution, together with extensive checking was done in ten minutes. Since
this was not of sufficient length for the purpose desired, the code went on to find five additional
solutions, the largest of which has well over a million digits. All 206,545 digits of the smallest
solution taking up over 46 computer pages (64 rows of 70 digits) are printed at one-third actual
size, four-to-a-page, in the Journal of Recreational Mathematics [10]. See the recent article by
Vardi [11] for a beautiful discussion of personal computer techniques and a prose translation of
the problem.
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If you have comments, questions or find glaring errors, please contact me by e-mail at the
following address: tricycle222@earthlink.net
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