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We begin with a set of problems that will be shown to be completely equivalent. The solution to
each problem is the same sequence of numbers called the Catalan numbers. Later in the document
we will derive relationships and explicit formulas for the Catalan numbers in many different ways.

1 Problems

1.1 Balanced Parentheses

Suppose you haven pairs of parentheses and you would like to form valid groupings of them, where
“valid” means that each open parenthesis has a matching closed parenthesis. For example, “(()())”
is valid, but “())()(” is not. How many groupings are there for each value ofn?

Perhaps a more precise definition of the problem would be this: A string of parentheses is valid
if there are an equal number of open and closed parentheses and if you begin at the left as you move
to the right, add1 each time you pass an open and subtract1 each time you pass a closed parenthesis,
then the sum is always non-negative.

Table 1 shows the possible groupings for0 ≤ n ≤ 5.

n = 0: * 1 way
n = 1: () 1 way
n = 2: ()(), (()) 2 ways
n = 3: ()()(), ()(()), (())(), (()()), ((())) 5 ways
n = 4: ()()()(), ()()(()), ()(())(), ()(()()), ()((())), 14 ways

(())()(), (())(()), (()())(), ((()))(), (()()()),

(()(())), ((())()), ((()())), (((())))

n = 5: ()()()()(), ()()()(()), ()()(())(), ()()(()()), ()()((())), 42 ways
()(())()(), ()(())(()), ()(()())(), ()((()))(), ()(()()()),

()(()(())), ()((())()), ()((()())), ()(((()))), (())()()(),

(())()(()), (())(())(), (())(()()), (())((())), (()())()(),

(()())(()), ((()))()(), ((()))(()), (()()())(), (()(()))(),

((())())(), ((()()))(), (((())))(), (()()()()), (()()(())),

(()(())()), (()(()())), (()((()))), ((())()()), ((())(())),

((()())()), (((()))()), ((()()())), ((()(()))), (((())())),

(((()()))), ((((()))))

Table 1: Balanced Parentheses

* It is useful and reasonable to define the count forn = 0 to be1, since there is exactly one way
of arranging zero parentheses: don’t write anything. It will become clear later that this is exactly the
right interpretation.
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1.2 Mountain Ranges

How many “mountain ranges” can you form withn upstrokes andn downstrokes that all stay above
the original line? If, as in the case above, we consider thereto be a single mountain range with zero
strokes, Table 2 gives a list of the possibilities for0 ≤ n ≤ 3:

n = 0: * 1 way
n = 1: /\ 1 way
n = 2: /\ 2 ways

/\/\, / \

n = 3: /\ 5 ways
/\ /\ /\/\ / \

/\/\/\, /\/ \, / \/\, / \, / \

Table 2: Mountain Ranges

Note that these must match the parenthesis-groupings above. The “(” corresponds to “/” and
the “) to “\”. The mountain ranges forn = 4 andn = 5 have been omitted to save space, but there
are14 and42 of them, respectively. It is a good exercise to draw the14 versions withn = 4.

In our formal definition of a valid set of parentheses, we stated that if you add one for open
parentheses and subtract one for closed parentheses that the sum would always remain non-negative.
The mountain range interpretation is that the mountains will never go below the horizon.

1.3 Diagonal-Avoiding Paths

In a grid ofn×n squares, how many paths are there of length2n that lead from the upper left corner
to the lower right corner that do not touch the diagonal dotted line from upper left to lower right? In
other words, how many paths stay on or above the main diagonal?

/\ /\/\

/ \/ \

Figure 1: Corresponding Path and Range

This is obviously the same question as in the example above, with the mountain ranges running
diagonally. In Figure 1 we can see how one such path corresponds to a mountain range.

Another equivalent statement for this problem is the following. Suppose two candidates for
election,A andB, each receiven votes. The votes are drawn out of the voting urn one after the
other. In how many ways can the votes be drawn such that candidateA is never behind candidate
B?

2



1.4 Polygon Triangulation

If you count the number of ways to triangulate a regular polygon with n + 2 sides, you also obtain
the Catalan numbers. Figure 2 illustrates the triangulations for polygons having3, 4, 5 and6 sides.

Figure 2: Polygon Triangulations

As you can see, there are1, 2, 5, and14 ways to do this. The “2-sided polygon” can also be
triangulated in exactly1 way, so the case wheren = 0 also matches.

1.5 Hands Across a Table

If 2n people are seated around a circular table, in how many ways can all of them be simultaneously
shaking hands with another person at the table in such a way that none of the arms cross each other?
Figure 3 illustrates the arrangements for2, 4, 6 and8 people. Again, there are1, 2, 5 and14 ways
to do this.

Figure 3: Hands Across the Table
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1.6 Binary Trees

The Catalan numbers also count the number of rooted binary trees withn internal nodes. Illustrated
in Figure 4 are the trees corresponding to0 ≤ n ≤ 3. There are1, 1, 2, and5 of them. Try to draw
the14 trees withn = 4 internal nodes.

A rooted binary tree is an arrangement of points (nodes) and lines connecting them where there
is a special node (the root) and as you descend from the root, there are either two lines going down
or zero. Internal nodes are the ones that connect to two nodesbelow.
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Figure 4: Binary Trees

1.7 Plane Rooted Trees

A plane rooted tree is just like the binary tree above, exceptthat a node can have any number of
sub-nodes; not just two.

Figure 5 shows a list of the plane rooted trees withn edges, for0 ≤ n ≤ 3. Try to draw the14
trees withn = 4 edges.
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Figure 5: Plane Rooted Trees

1.8 Skew Polyominos

A polyomino is a set of squares connected by their edges. A skew polyomino is a polyomino such
that every vertical and horizontal line hits a connected setof squares and such that the successive
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n = 1

n = 2

n = 3

n = 4

Table 3: Skew Polyominos with Perimeter2n + 2

columns of squares from left to right increase in height—thebottom of the column to the left is
always lower or equal to the bottom of the column to the right.Similarly, the top of the column to
the left is always lower than or equal to the top of the column to the right. Table 3 shows a set of
such skew polyominos.

Another amazing result is that if you count the number of skewpolyominos that have a perimeter
of 2n + 2, you will obtainCn. Note that it is the perimeter that is fixed—not the number of squares
in the polyomino.

1.9 Multiplication Orderings

Suppose you have a set ofn + 1 numbers to multiply together, meaning that there aren multipli-
cations to perform. Without changing the order of the numbers themselves, you can multiply the
numbers together in many orders. Here are the possible multiplication orderings for0 ≤ n ≤ 4
multiplications. The groupings are indicated with parentheses and dot for multiplication in Table 4.

n = 0 (a) 1 way
n = 1 (a·b) 1 way
n = 2 ((a·b)·c), (a·(b·c)) 2 ways
n = 3 (((a·b)·c)·d), ((a·b)·(c·d)), ((a·(b·c))·d), 5 ways

(a·((b·c)·d)), (a·(b·(c·d)))
n = 4 ((((a·b)·c)·d)·e), (((a·b)·c)·(d·e)), (((a·b)·(c·d))·e), 14 ways

((a·b)·((c·d)·e)), ((a·b)·(c·(d·e))), (((a·(b·c))·d)·e),
((a·(b·c))·(d·e)), ((a·((b·c)·d))·e), ((a·(b·(c·d)))·e),
(a·(((b·c)·d)·e)), (a·((b·c)·(d·e))), (a·((b·(c·d))·e)),
(a·(b·((c·d)·e))), (a·(b·(c·(d·e))))

Table 4: Multiplication Arrangements

To convert the examples above to the parenthesis notation, erase everything but the dots and the
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closed parentheses, and then replace the dots with open parentheses. For example, if we wish to
convert(a·(((b·c)·d)·e)), first erase everything but the dots and closed parentheses:··)·)·)). Then
replace the dots with open parentheses to obtain:(()()()).

The examples in Table 4 are arranged in exactly the same orderas the entries in Table 1 with the
correspondence described in the previous paragraph. Try toconvert a few yourself in both directions
to make certain you understand the relationships.

2 A Recursive Definition

The examples above all seem to generate the same sequence of numbers. In fact it is obvious that
some are equivalent: parentheses, mountain ranges and diagonal-avoiding paths, for example. Later
on, we will prove that the other seqences are also the same. Once we’re convinced that they are the
same, we only need to have a formula that counts any one of themand the same formula will count
them all.

If you have no idea how to begin with a counting problem like this, one good approach is to write
down a formula that relates the count for a givenn to previously-obtained counts. It is usually easy
to count the configurations forn = 0, n = 1, andn = 2 directly, and from there, you can count
more complex versions.

In this section, we’ll use the example with balanced parentheses discussed and illustrated in
Section 1.1. Let us assume that we already have the counts for0, 1, 2, 3, · · · , n − 1 pairs and we
would like to obtain the count forn pairs. LetCi be the number of configurations ofi matching
pairs of parentheses, soC0 = 1, C1 = 1, C2 = 2, C3 = 5, andC4 = 14, which can be obtained by
direct counts.

We know that in any balanced set, the first character has to be “(”. We also know that somewhere
in the set is the matching “)” for that opening one. In betweenthat pair of parentheses is a balanced
set of parentheses, and to the right of it is another balancedset:

(A)B,

whereA is a balanced set of parentheses and so isB. BothA andB can contain up ton − 1 pairs
of parentheses, but ifA containsk pairs, thenB containsn− k − 1 pairs. Notice that we will allow
eitherA or B to contain zero pairs, and that there is exactly one way to do so: don’t write down any
parentheses.

Thus we can count all the configurations whereA has0 pairs andB hasn−1 pairs, whereA has
1 pair andB hasn− 2 pairs, and so on. Add them up, and we get the total number of configurations
with n balanced pairs.

Here are the formulas. It is a good idea to try plugging in the numbers you know to make certain
that you haven’t made a silly error. In this case, the formulafor C3 indicates that it should be equal
to C3 = 2 · 1 + 1 · 1 + 1 · 2 = 5.

C1 = C0C0 (1)

C2 = C1C0 + C0C1 (2)

C3 = C2C0 + C1C1 + C0C2 (3)

C4 = C3C0 + C2C1 + C1C2 + C0C3 (4)

. . . . . .
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Cn = Cn−1C0 + Cn−2C1 + · · · + C1Cn−2 + C0Cn−1 (5)

Beginning in the next section, we will be able to use these recursive formulas to show that the
counts of other configurations (triangulations of polygons, rooted binary trees, rooted tress, et cetera)
satisfy the same formulas and thus must generate the same sequence of numbers.

But simply by using the formulas above and a bit of arithmetic, it is easy to obtain the first
few Catalan numbers:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,
2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020,
91482563640, 343059613650, 1289904147324, . . .

2.1 Counting Polygon Triangulations

It is not hard to see that the polygon triangulations discussed in section 1.4 can be counted in much
the same way as the balanced parentheses. See Figure 6.

Figure 6: Octagon Triangulations

In the figure we consider the octagon, but it should be clear that the same argument applies to
any convex polygon. Consider the horizontal line at the top of the polygon. After triangulation, it
will be part of exactly one triangle, and in this case, there are exactly six possible triangles of which
it can be a part. In each case, once that triangle is selected,there is a polygon (possibly empty) on
the right and the left of the original triangle that must itself be triangulated.

What we would like to show is that a convex polygon withn > 3 sides can be triangulated in
Cn−2 ways. Thus the octagon should haveC8−2 = C6 triangulations.

For the example in the upper left of Figure 6, the triangle leaves a7-sided figure on the left and
an empty figure (essentially a two-sided polygon) on the right. This triangulation can be completed
by triangulating both sides; the one on the left can be done inC5 ways and the empty one on the
right,C0 ways, for a total ofC5 ·C0. The middle example on the top leaves a pentagon and a triangle
that, in total, can be trianguated inC4 ·C1 ways. Similar arguments can be made for all six positions
of the triangle containing the top line, so we conclude that:

C6 = C5 · C0 + C4 · C1 + C3 · C2 + C2 · C3 + C1 · C4 + C0 · C5,

which is exactly how the Catalan numbers are defined for the nested parentheses.
Convince yourself that a similar argument can be made for anysize original convex polygon.
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2.2 Counting Non-Crossing Handshakes

To count the number of hand-shakes discussed in Section 1.5 we can use an analysis similar to that
used in section 2.1.

If there are2n people at the table pick any particular person, and that person will shake hands
with somebody. To admit a legal pattern, that person will have to leave an even number of people on
each side of the person with whom he shakes hands. Of the remainingn− 1 pairs of people, he can
leave zero on the right andn−1 pairs on the left,1 on the right andn−2 on the left, and so on. The
pairs left on the right and left can independently choose anyof the possible non-crossing handshake
patterns, so again, the countCn for n pairs of people is given by:

Cn = Cn−1C0 + Cn−2C1 + · · · + C1Cn−2 + C0Cn−1,

which, together with the fact thatC0 = C1 = 1, is just the definition of the Catalan numbers.

2.3 Counting Trees

Counting the binary trees discussed in Section 1.6 is similar to what we’ve done previously. Obvi-
ously there is one way to make a rooted binary tree with zero orone internal node. To work out the
number of trees withn internal node, note that one of thosen nodes is the root node, and then the
n−1 additional internal nodes must be distributed on the left orthe right below the root node. These
can be distributed as0 on the left andn − 1 on the right,1 on the left andn − 2 on the right, and so
on, yielding exactly the same formula that we had in every previous example.

To count the rooted plane trees discussed in Section 1.7 we use the same strategy. There is one
example each for trees with zero and one edge, so the counts here are the same:C0 = C1 = 1.
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Figure 7: Plane Rooted Trees With 4 Edges

Now, to count the number of plane rooted trees withn > 1 edges we again begin from the root.
There is at least one edge going down (leaving us withn − 1 edges to draw). The remainingn − 1
edges can be placed below that initial edge or hooked directly to the root node to the right of that
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edge. Then − 1 edges, as before, can be distributed to these two locations as0 andn − 1, as1 and
n− 2, et cetera. It should be clear that the same formula defining the Catalan numbers will apply to
the count of rooted plane trees.

In Figure 7 the table on the left dupliates the structure of trees with3 or fewer edges and the table
on the right shows how the trees with4 edges are generated from them.

2.4 Counting Diagonal-Avoiding Paths

Up to now we do not have an explicit formula for the Catalan numbers. We know that a large
collection of problems all have the same answers, and we havea recursive formula for those numbers,
but it would be nice to have an explicit form.

Perhaps the easiest way to obtain an explicit formula for theCatalan numbers is to analyze the
number of diagonal-avoiding paths discussed in Section 1.3. We will do so by counting the total
number of paths through the grid and then subtract off the number of paths that hit the diagonal.

�
�

�
�

�:

P

�
�

�
�

�:

P

Figure 8: Modifying a Bad Path

Figure 8 illustrates a typical path that we do not want to count since it crosses the dotted diagonal
line. Such a path may cross that line multiple times, but there is always a first time; in the figure,
pointP is the first grid point it touches on the wrong side of the diagonal. There will always be such
a pointP for every bad path.

For every such path, reflect the path beginning atP—every time the original path goes to the
right, go down instead, and when the original path goes down,go to the right. It is clear that by the
time the path reaches the pointP it will have traveled one more step down than across, so it will
have movedk steps to the right andk + 1 steps down. The total path hasn steps across and down,
so there remainn − k steps to the right andn − k − 1 steps down. But since we swap steps to the
right and steps down, the modified path with have a total of(k) + (n − k − 1) = n − 1 steps to the
right and(k + 1) + (n − k) = n + 1 steps down. Thus every modified path ends at the same point,
n − 1 steps to the right andn + 1 steps down.

Every bad path can be modified this way, and every path from theoriginal starting point to this
pointn − 1 to the right andn + 1 down corresponds to exactly one bad path. Thus the number of
bad paths is the total number of routes in a grid that is(n − 1) by (n + 1).

There are
(

m+k
m

)

paths through ank×m grid1. Thus the total number of paths through then×n

grid is
(

2n
n

)

and the total number of bad paths is
(

2n
n+1

)

. ThusCn, thenth Catalan number, or the
total number of diagonal-avoiding paths through ann × n grid, is given by:

Cn =

(

2n

n

)

−
(

2n

n + 1

)

=

(

2n

n

)

− n

n + 1

(

2n

n

)

=
1

n + 1

(

2n

n

)

.

1To see this, remember that there arem steps down that need to be taken along thek+1 possible paths going down. Thus
the problem reduces to counting the number of ways of puttingm objects ink + 1 boxes which is

(

m+k

m

)

.
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3 Counting Mountain Ranges—Method 1

A very similar argument can be made as in the previous sectionif we use the interpretation of the
Catalan numbers based on the count of mountain ranges as described in Section 1.2. In that section,
we are seeking arrangements ofn up-strokes andn down-strokes that form valid mountain ranges.

If we completely ignore whether the path is valid or not, we haven up-strokes that we can choose
from a collection of2n available slots. In other words, ignoring path validity, weare simply asking
how many ways you can rearrange a collection ofn up-strokes andn down-strokes. The answer is
clearly

(

2n
n

)

.
Now we have to subtract off the bad paths. Every bad path goes below the horizon for the first

time at some point, so from that point on, reverse all the strokes—replace up-strokes with down-
strokes and vice-versa. It is clear that the new paths will all wind up 2 steps above the horizon, since
they consist ofn + 1 up-strokes andn− 1 down-strokes. Conversely, every path that ends two steps
above the horizon must be of this form, so it corresponds to exactly one bad path.

How many such bad paths are there? The same number as there areways to choose then + 1
up-strokes from among the2n total strokes, or

(

2n
n+1

)

.
Thus the count of valid mountain ranges, orCn, is given by exactly the same formula:

Cn =

(

2n

n

)

−
(

2n

n + 1

)

=

(

2n

n

)

− n

n + 1

(

2n

n

)

=
1

n + 1

(

2n

n

)

.

4 Counting Mountain Ranges—Method 2

Here is a different way to analyze the mountain problem. Thistime, imagine that we begin with
n + 1 up-strokes and onlyn down-strokes—we add an extra up-stroke to our collection.

First we solve the problem: How any arrangements can be made of these2n + 1 symbols,
without worrying about whether they form a “valid” mountainrange (whatever that means with an
unbalanced number of up-strokes and down-strokes). Clearly, if the ordering does not matter, there
are

(

2n+1

n

)

ways to do this.
One thing is certain, however. No matter how they are arranged, they mountain range will be

one unit higher at the end, since we taken + 1 steps up and onlyn steps down.
Let’s look at a specific example withn = 3 (and2n + 1 = 7): up up down up up down down.

In Figure 4, we have arranged this sequence over and over and you can see that every7 steps, the
mountain range is one unit higher.

Figure 9: Growing Mountains

Since it is a repeating pattern, it’s clear that we can draw a straight line below it that touches the
bottom-most points of the growing mountain range.
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In our example, this touching line seems to hit only once per complete set of7 strokes, and we
will show that this will always be the case, for any unbalanced number of up-strokes and down-
strokes.

We can draw our mountain range on a grid, and it’s clear that the slope of the line is1/(2n + 1)
(it goes up1 unit in every complete cycle of the pattern of2n + 1 strokes. But lines with slope
1/(2n + 1) can only hit lattice points every2n + 1 units, so there is exactly one touching in each
complete cycle.

If you have a series of2n + 1 strokes, you can cycle that around to2n + 1 arrangements. For
example, the arrangement//\/\ can be cycled to four other arrangements:/\/\/, \/\//, /\//\
and\//\/. That means the complete set of arrangements can be divided into equivalence classes of
size2n + 1, where two arrangements are equivalent if they are cycled versions of each other.

If we consider the version among these2n + 1 cycles, the only one that yields a valid mountain
range is the one that begins at the low point of the2n + 1 arrangement. Thus, to get a count of valid
mountain ranges withn up-strokes andn down-strokes, we need to divide our count of2n+1 stroke
arrangements by2n + 1:

Cn =
1

2n + 1

(

2n + 1

n

)

=
1

2n + 1
· (2n + 1)!

n!(n + 1)!
=

1

n + 1
· (2n)!

n! n!
=

1

n + 1

(

2n

n

)

.

Finally, note that when the line is drawn that touches the bottom edge of the range of mountains
with one more “up” than “down”, the first steps after the touching points are two “ups”, since an
“up-down” would immediately dip below the line. It should beclear that if one of the two initial
“up” moves is removed, the resulting series will stay above ahorizontal line.

5 Generating Function Solution

Using the formulas 1 through 5 in Section 2, we can obtain an explicit formula for the Catalan
numbers,Cn using the technique known as generating functions.

We begin by defining a functionf(z) that contains all of the Catalan numbers:

f(z) = C0 + C1z + C2z
2 + C3z

3 + · · · =

∞
∑

i=0

Ciz
i.

If we multiply f(z) by itself to obtain[f(z)]2, the first few terms look like this:

[f(z)]2 = C0C0 + (C1C0 + C0C1)z + (C2C0 + C1C1 + C0C2)z
2 + · · · .

The coefficients for the powers ofz are the same as those for the Catalan numbers obtained in
equations 1 through 5:

[f(z)]2 = C1 + C2z + C3z
2 + C4z

3 + · · · . (6)

We can convert Equation 6 back tof(z) if we multiply it by z and addC0, so we obtain:

f(z) = C0 + z[f(z)]2. (7)

Equation 7 is just a quadratic equation inf(z) which we can solve using the quadratic formula.
In a more familiar form, we can rewrite it as:zf2 − f + C0 = 0. This is the same as the quadratic
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equation:af2 + bf + c = 0, wherea = z, b = −1, andc = C0. Plug into the quadratic formula
and we obtain:

f(z) =
1 −

√
1 − 4z

2z
. (8)

Notice that we have used the− sign in place of the usual± sign in the quadratic formula. We
know thatf(0) = C0 = 1, so if we replaced the± symbol with+, asz → 0, f(z) → ∞.

To expandf(z) we will just use the binomial formula on
√

1 − 4z = (1 − 4z)1/2.

If you are not familiar with the use of the binomial formula with fractional exponents, don’t worry—
it is exactly the same, except that it never terminates.

Let’s look at the binomial formula for an integer exponent and just do the same calculation for a
fraction. If n is an integer, the binomial formula gives:

(a + b)n = an +
n

1
an−1b1 +

n(n − 1)

2 · 1 an−2b2 +
n(n − 1)(n − 2)

3 · 2 · 1 an−3b3 + · · · .

If n is an integer, eventually the numerator is going to have a term of the form(n − n), so that
term and all those beyond it will be zero. Ifn is not an integer, and it is1/2 in our example, the
numerators will pass zero and continue. Here are the first fewterms of the expansion of(1−4z)1/2:

(1 − 4z)1/2 = 1 −
(

1

2

)

1
4z +

(

1

2

)(

− 1

2

)

2 · 1 (4z)2 −
(

1

2

)(

− 1

2

)(

− 3

2

)

3 · 2 · 1 (4z)3 +
(

1

2

)(

− 1

2

)(

− 3

2

)(

− 5

2

)

4 · 3 · 2 · 1 (4z)4 −
(

1

2

)(

− 1

2

)(

− 3

2

)(

− 5

2

)(

− 7

2

)

5 · 4 · 3 · 2 · 1 (4z)5 + · · ·

We can get rid of many powers of2 and combine things to obtain:

(1 − 4z)1/2 = 1 − 1

1!
2z − 1

2!
4z2 − 3 · 1

3!
8z3 − 5 · 3 · 1

4!
16z4 − 7 · 5 · 3 · 1

5!
32z5 − · · · (9)

From Equations 9 and 8:

f(z) = 1 +
1

2!
2z +

3 · 1
3!

4z2 +
5 · 3 · 1

4!
8z3 +

7 · 5 · 3 · 1
5!

16z4 + · · · (10)

The terms that look like7 · 5 · 3 · 1 are a bit troublesome. They are like factorials, except theyare
missing the even numbers. But notice that22 ·2! = 4 ·2, that23 ·3! = 6 ·4 ·2, that24 ·4! = 8 ·6 ·4 ·2,
et cetera. Thus(7 · 5 · 3 · 1) · 244! = 8!. If we apply this idea to Equation 10 we can obtain:

f(z) = 1 +
1

2

( 2!

1!1!

)

z +
1

3

( 4!

2!2!

)

z2 +
1

4

( 6!

3!3!

)

z3 +
1

5

( 8!

4!4!

)

z4 + · · · =

∞
∑

i=0

1

i + 1

(

2i

i

)

zi.

From this we can conclude that theith Catalan number is given by the formula

Ci =
1

i + 1

(

2i

i

)

.
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