
Algebraic Geometry

Question: What regular polygons can be inscribed in an ellipse?

1. Varieties, Ideals, Nullstellensatz

Let K be a field. We shall work over K, meaning, our coefficients of polynomials
and other scalars will lie in K.

Definitions.

1. An affine variety X in An is the zero locus of a collection of polynomials
{f(x1, ..., xn)} in K[x1, ..., xn]. A projective variety X in Pn is the zero locus
of a collection of homogeneous polynomials {F (Z0, ..., Zn)} in K[Z0, ..., Zn].

2. For a given variety X, the set of all polynomials vanishing on X is an ideal,
called the ideal of X and denoted by I(X). In other words,

I(X) = (..., fα, ...) or I(X) = (..., Fα, ...),

depending on whether the variety is affine or projective. In the second case, the
ideal is called homogeneous, i.e. generated by homogeneous polynomials. Con-
versely, for a given ideal I ⊂ K[x1, ..., xn] (or homogeneous I ⊂ K[Z0, ..., Zn]),
the zero locus of I is denoted by Z(I).

Projective varieties can be thought of as “completions”, “compactifications”, or
“closures” of affine varieties. Their global properties are usually easier to describe
than those of affine varieties. Conversely, affine varieties can be thought of as building
blocks of projective varieties (indeed, they constitute an open cover), and hence local
properties are easier to describe using affine varieties. However, projective varieties
vary “nicely” in families and hence parametrizing and moduli spaces are usually
constructed for projective varieties with certain defining common properties.

3. A ring R is called Noetherian if any inscreasing sequence of ideals terminates,
i.e. whenever Ij’s are ideals in R such that

I1 ⊂ I2 ⊂ · · · ⊂ Ij ⊂ · · ·
then for some k ≥ 1: Ik = Ik+1 = Ik+2 = · · ·

4. An ideal I in a ring R is called radical if whenever fm ∈ I (f ∈ R, m ∈ N),
then f ∈ I. In other words, I contains all (positive integer) roots of its
elements.

Theorem 1. The polynomial ring R = K[x1, x2, ..., xn] is Noetherian. Consequently,
any ideal I of R is finitely generated. In particular, for any affine (or projective)
variety X, the ideal I of X is generated by finitely many polynomials.
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Lemma 1. The ideal of any algebraic variety X is radical. If I is an arbitrary ideal,
the set of all radicals of its elements:

√
I := {f ∈ R | fn ∈ I for some n ∈ N}

is also an ideal, called the radical of I. If I is a radical ideal, then its radical is itself,
i.e. the operation of taking radicals stabilizes after one step.

We construct maps bewteen the set X of all varieties X over K and the set J of all
ideals J ⊂ K[x1, ..., xn] by sending

i : X 7→ I(X) and j : J 7→ Z(J).

It is immediate from definition of an ideal of variety that Z(I(X)) = X, i.e. j◦i = idX.
Also, the image of i is inside R, the subset of radical ideals in R. Thus, we have an
injection i : X ↪→ R with a one–way inverse j : R → X. It is natural to ask whether i
and j are inverses of each other, i.e. whether i ◦ j = idR.

For any ideal J ⊂ J (not necessarily radical), we consider X := Z(J) = j(J) –
a variety, and then take i(X) = I(X) = I(Z(J)). It is evident that I(X) will be

a radical ideal containing J , but is it going to be
√

J? To paraphrase the problem,
start with J being a radical ideal and take I(Z(J)). Is this equal to J?

The answer in general is no. For example, if K = R is the ground field, and
J = (x2 + y2) is the ideal generated by the single polynomial f(x, y) = x2 + y2 in the
affine plane, then J is obviously radical (f is irreducible), and the zero locus of J is
Z(J) = (0, 0) – just one point. However, the ideal of (0, 0) is definitely much larger
than J – it consists of all polynomials vanishing at (0, 0), i.e. having no free terms:
I((0, 0)) = (x, y) ⊃ (x2 + y2). Thus, we end up with a (radical) ideal bigger than the
original.

The above situation is possible because R is not an algebraically closed field. This
leads to the famous Nullstelensatz, a basic theorem in commutative algebra, on which
much of algebraic geometry over algebraically closed fields is based.

Theorem 2. (Nullstelensatz) If K is an algebraically closed field, then for any ideal
J ⊂ K[x1, ..., xn]:

i ◦ j(J) = I(Z(J)) =
√

J.

In particular, there is a one–to–one correspondence between the set X of affine vari-
eties X in An and radical ideals R given by

i : X → R, and j : R → X.

Note that the radical of the unit ideal is again the unit ideal:
√

(1) = (1). This
implies the following corollary:

Corollary 1. If f1, ..., fk are polynomials in several variables over an algebraically
closed field K, then they have no common zeros in K iff

1 = g1f1 + g2f2 + · · ·+ gkfk
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for some polynomials g1, g2, ..., gk.

Some other “strange” things happen over fields, which are not algebraically closed.
For example, we would like to call a “planar curve” any variety X in A2 which is
given by 1 polynomial. However, over R, the “curve” defined by x2 + y2 = 0 is really
just a point, while over C (or any algebraically closed fields) it is a pair of intersecting
lines. Thus, many interesting and intuitive properties of algebraic varieties hold only
over algebraically closed fields.

There is an analog of Nullstelensatz for projective varieties (for K = K, of course.)
There is one subtle point, though. We call Ir = (Z0, ..., Zn) the irrelevant ideal in
K[Z0, Z1, ..., Zn]. Note that Ir is radical, and that Z(Ir) = ∅. Yet, Ir is not the
whole ideal of ∅: (1) = K[Z0, Z1, ..., Zn], the unit ideal, is the ideal of ∅. Thus, we
have two radical ideals competing for the ∅: Z(Ir) = Z((1)) = ∅. The bigger one
“wins”, because I(∅) = (1), and we state the Nullstelensatz as follows:

Theorem 3. There is a one–to–one correspondence between the set X of projective
varieties X ⊂ Pn and the set R of radical homogeneous ideals minus Ir given by i
and j from above. In particular, for J ∈ J:

I(Z(J)) =

{ √
J if Z(J) 6= ∅

(1) if Z(J) = ∅.

Note further that for a (homogeneous) ideal J , Z(J) = ∅ iff
√

J = (1) or
√

J =

(Z0, Z1, ..., Zn). In both cases,
√

J ⊃ (Z0, Z1, ..., Zn), which can be shown to imply
J ⊃ (Z0, Z1, ..., Zn)d for some d > 0.

Proposition 1. Let J be a homogeneous ideal. Then Z(J) = ∅ iff J contains a
power of the irrelevant ideal. In other words, a collection of homogeneous polynomi-
als {Fα} will have no common zeros iff the ideal generated by the Fα’s contains all
(homogeneous) polynomials of a certain degree d > 0.
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Examples of Varieties

Example 1. Let Q be the (smooth) quadric surface in P3 given as the zero locus of
one homogeneous quadratic equation:

Q = Z(Z0Z3 − Z1Z2).

The quadric Q consists of two families of lines, each of which sweeps Q on its own:

{Z1 = λZ0, Z3 = λZ2} and {Z2 = µZ0, Z3 = µZ1}.

In terms of the matrix

M =

(
Z0 Z1

Z2 Z3

)
,

Q is the locus where detM = 0, one family of lines consists of lines where the two
column satisfy a given linear relation, the other family – where the two rows satisfy
a given linear relation. Note that two lines in a family do not intersect (they are
skew lines in P3), while any two lines from different families intersect in exactly one
point. The latter hints at an alternative description of Q – namely as the “Cartesian
product” P1 × P1.

More generally, for any two varieties X and Y , there is a (unique) variety X × Y
with projection maps π1 : X × Y → X and π2 : X × Y → Y , the fibers of which are
correspondingly copies of Y and of X. The uniqueness of such a variety is ensured by
some extra (natural) properties coming from category theory – such properties are
exactly what we would expect from a variety deserving to be called the “product” of
two varieties.
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The actual construction of this product is given by a (seemingly random) map,
called the Segre embedding. For starters, to construct the product Pn×Pm, we define
the Segre map by

σn,m : Pn
[X] × Pm

[Y ] → P(n+1)(m+1)−1
[Z]

σn,m([X0, ..., Xn], [Y0, ..., Ym]) = [X0Y0, ..., XiYj, ..., XnYm].

If we label the coordinates on P(n+1)(m+1)−1
[Z] = PN by Zij for 0 ≤ i ≤ n and 0 ≤

j ≤ m, then the image of σn,m is the zero locus of all possible quadratic equations
ZijZkl = ZilZkj. Thus, the image of the Segre map is a variety. Factoring into this the
injectivity of σn,m, allows us to “identify” the set–product Pn ×Pm with a subvariety
of PN , which is define as the product of Pn and Pm in the category of varieties. One
can show that this particular variety satisfies all the required properties of a product,
and by virtue of the uniqueness of the product, it is The product variety Pn × Pm.

Now it is not hard to construct the product of any two varieties X and Y : if X ⊂ Pn

and Y ⊂ Pm, then X ×Y is the subvariety of Pn×Pm, satisfying the extra equations
coming from X and Y .

Example 2. The twisted cubic curve C is the zero locus of three polynomials:

C = Z(Z0Z3 − Z1Z2, Z0Z2 − Z2
1 , Z1Z3 − Z2

2).

The twisted cubic C lies on the quadric surface Q, and is a curve of type (2, 1) on Q,
i.e. C meets every line in one family in 2 points, and every line in the other family - in
1 point (prove this!) Prove also that the zero locus of any two of the three quadratic
polynomials defining C is the union of C and a line on Q meeting C in two points
(or being tangent to C). How many such tangent lines to C are there in the family
consisting generically of lines meeting C in two points?

An alternative description of C is the image of the Veronese embedding of P1 in P3:

C = {[X3, X2Y,XY 2, Y 3] | [X,Y ] ∈ P1} = ν3(P1).

Show that this is indeed an embedding, and that its image indeed coincides with the
twisted cubic curve C.
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Example 3. What are the hyperplane sections of Q, i.e. P2 ∩ Q, as the hyperplane

P2 varies in P3?

The strategy here is to restrict the equation of Q to the hyperplane P2, and to realize
that a homogeneous quadratic polynomial in 3 variables is either irreducible (smooth
plane conic hyperplane section of Q), or factors as the product of two homogeneous
linear factors (the hyperplane section here is the union of two intersecting lines in P2).
Prove that we will never get the quadratic polynomial to factor as a perfect square
of a linear form (i.e. no hyperplane in P3 intesects Q in a “double line”).

We push the above considerations an inch further to ask the following question:
can we construct a variety HQ which in some reasonable way will be the family of
all hyperplane sections of Q? In other words, can we separate all hyperplane sections
of Q, so that they do not intersect anymore, but stay as fibers of some map? The
answer is “YES”, yet we have to work a bit to construct this variety.

For starters, we can construct the universal hyperplane H in P3 – apriori, we want
this to be a variety, representing all hyperplanes in P3, in other words, H should be a
family of all hyperplanes in P3. The first step is to realize what variety parametrizes
these hyperplanes – this is the dual (P3)∗, which is really P3 all over again, by with
different coordinates. If P3 has coordinates [Z0, Z1, Z2, Z3], then a hyperplane in
P3 is given by a linear form W0Z0 + W1Z1 + W2Z2 + W3Z3 = 0 for some fixed
[W0, W1, W2, W3] ∈ (P3)∗. Thus, the dual (P3)∗ has coordinates W0, W1, W2, W3;
points in (P3)∗ correspond to hyperplanes in P3, and hyperlanes in (P3)∗ correspond
to points in P3.

Now, the universal hyperplane H should be defined as a set by

H = {[p, H] | p ∈ P3, H ∈ (P3)∗, p ∈ H}.
Therefore, we naturally consider H ∈ P3 × (P3)∗ - it is the zero locus of a single
bihomogeneous polynomial:

W0Z0 + W1Z1 + W2Z2 + W3Z3 = 0.
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In terms of the coordinates Tij on P15, in which P3×(P3)∗ is embedded, this polynomial
reads:

T00 + T11 + T22 + T33 = 0.

We conclude that H is a subvariety of the product P3 × (P3)∗; more precisely, it is a
hyperplane section of H inside P15.

Finally, to construct the universal hyperplane section HQ of the quadric Q, we only
have to intersect with H:

HQ = Q ∩H ⊂ P3 × (P3)∗.

Since the product on the right has two natural projections π1 and π2 onto the two
factors P3 and (P3)∗, we can restrict these maps to HQ, and ask what the fibers of π1

and π2 are. Prove that the fibers of π1 are all (isomorphic to) P3, while the fibers of
π2 are the hyperplane sections of Q – what we wanted in the first place.

Maps of varieties φ : X → Y whose fibers are all isomorphic to some Pk are called
Pk– bundles over Y . Sometimes it is important to classify all such bundles over a
fixed variety Y – this describes additional invariants of Y , which may be used for
instance to identify two non–isomorphic varieties.

Example 4. As we saw above, all hyperplanes in P3 can be parametrized by the

variety (P3)∗ (which is isomorphic to P3.) In this case, the points of (P3)∗ are in 1–1
correspondence with the hyperplanes in question, and (P3)∗ reflects (in a certain sense)
how the hyperplanes vary in P3 - that is, for any “nice” family F of hyperplanes in P3

the subset of (P3)∗ corresponding to F is a subvariety of (P3)∗. (The word “nice” has
a very technical meaning, usually called “flatness” of families. We shall not discuss
this here since it will take us too far afield.)

One can easily generalize the above construction to parametrize all hyperplanes in
Pn by the dual projective space (Pn)∗. A natural question arises: Can we find varieties
parametrizing other objects, say, conics in P2? Such varieties are called parameter
spaces.
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Let P be the set of all conics in P2. If we fix the coordinates of P2 to be X, Y, Z,
then a conic C is determined upto a scalar by a quadratic equation:

a0X
2 + a1Y

2 + a2Z
2 + a3XY + a4Y Z + a5ZX = 0.

Such an equation determines a projective point [a0, a1, ..., a5] ∈ P5, and conversely,
any point of P5 determines a unique quadratic polynomial (upto a scalar). Thus, the
parameter space for all conics in P2 is P = P5.

Similarly, the parameter space of all hypersurfaces of degree d in Pn (i.e. subvari-
eties given by single degree d homogeneous polynomials on Pn) is Pd,n = PN where

N =
(

n+d
d

)
− 1. Note a slight technicality here: we have included as points in Pd,n

“hypersurfaces” corresponding to polynomials with multiple factors. For example, in
the case of conics in P2, we included as points in P2,2 all “double” lines. One can
show that the set of such “multiple” (or more precisely, non-reduced) hypersurfaces
is in fact a subvariety of the corresponding parameter space Pd,n.

Example 5. Parameter spaces parametrize usually not just objects X sharing some
common properties, but also the embeddings of X in projective space. For example,
there are really only three types of conics in P2 – the irreducible (smooth) conics,
the joins of two different lines, and the double lines. Every irreducible conic can
be transformed into any other irreducible conic after a suitable change of variables
(coordinate change) on P2, etc. Thus, in constructing P2,2, we grossly “overcounted”
the irreducible conics (well, we were parametrizing, therefore, not just the conics, but
the pairs (C, φ) where C is a plane conic and φ : C ↪→ P2 is an embedding.)

The philosophy of viewing a variety as an object with a given embedding in some
Pn is inherent to XIX century algebraic geometry, especially to the Italian school. XX
century changed this view by considering varieties as objects on their own, disregard-
ing particular embeddings in projective space. For example, any irreducible conic in
P2 is really a P1 embedded in a certain way in P2:

ν2 : P1 ↪→ P2, ν2([X, Y ]) = [X2, XY, Y 2].

Similarly, the twisted cubic C in P3 is isomorphic to P1: C = ν3(P3). We say that
these curves are isomorphic to each other because there exist nicely defined maps
via polynomials going back and forth between these varieties, whose compositions are
identities. Thus, the intrinsic properties of P1 are preserved under these isomorphism,
and therefore the embeddings do not change the actual variety.

Some extrinsic properties, however, change, and these cause the different embed-
dings of P1 to look different. For example, define the degree of X ∼= P1 ⊂ Pn to be
the number of points in the intersection of a general hyperplane in Pn with X. Thus,
the conics in P2 have degree 2, and will keep their degree if we embed now P2 as a
linear subspace of a bigger Pn. However, the twisted cubic C in P3 has degree 3 (one
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way to see this is to recall that a line in one ruling meets C in 1 point, while a line
in the other ruling meets C in 2 points.)

While parameter spaces may take into account such extrinsic properties as degrees
of varieties, moduli spaces usually parametrize objects according to only their intrinsic
properties, and hence are much harder to be constructed. To even state what common
instrinsic properties can be characterized will take too much ink on this handout. But
let us mention one very famous example – the moduli space Mg of smooth curves of
genus g. 1 These curves do not lie (and cannot be embedded in general) in the same
projective space Pn. The best we can say is that each such (non–hyperelliptic) curve
can be embedded in P2g−3, but we don’t care about these embeddings anyways. Yet,
Mg can be constructed, and it is a variety of dimension 3g − 3 for g ≥ 2. For g = 1
there is only one such curve – P1, so M1 is really just one point; for g = 1 – the elliptic
curves can be effectively parametrized by a certain cross ratio, and hence M1

∼= P1.

A further development of this theory is the Deligne-Mumford compactification of
Mg. Since Mg is not a projective variety, one can have a nice family of smooth curves
degenerating to a singular curve, but Mg does not have any points to reflect the
limiting singular member of the family. The question arises – what is the “minimal”
set of singular curves must be added to the set of smooth curves in order to obtain
a “nice” moduli space Mg, compactifying Mg? Deligne and Mumford chose (and
for very good reasons) the set of the so–called stable curves C of genus g. These
are connected curves with at most nodal type of singularities (e.g. take two lines
intersecting in P2), and such that if they contain a P1–component, then the latter
must meet at least 3 other components of the curve. The last condition is added to
ensure that the curves have finite groups of automorphisms. With this said, Mg is the
moduli space of all stable curves of genus g. It is a projective variety which contains
Mg as an open dense set, and it reflects naturally the variation of “nice” families
of stable curves. Moreover, any “nice” family whose general members are smooth
curves, but whose special members can be as nasty as you wish, can be brought in

1Be forwarned that what follows in this section is littered with too many unexplained terms in
order for the text to be self–contained.

9



an essentially one way to a family with only stable members. This process is called
semistable reduction and it is the basis for many related constructions in algebraic
geometry.

Zariski Topology

Definitions.

(a) An ideal P of a ring R is called prime if whenever ab ∈ P for a, b ∈ R, then
a ∈ P or b ∈ P (or both).

(b) A variety X is called irreducible if for any decomposition X = X1 ∪X2 of X
into a union of two subvarieties, either X1 = X or X2 = X. In other words,
there are no non–trivial decompositions of X into smaller varieties.

Proposition 2. A variety X is irreducible iff its ideal I(X) is prime.

Thus, there exists a one–to–one correspondence between the set of varieties X

and the set of prime (homogeneous if projective X) ideals P in the corresponding
polynomial ring.

Theorem 4. Any radical ideal I ⊂ K[x1, ..., xn] is uniquely expressible as a finite
intersection of prime ideals Pi with Pi 6⊂ Pj for i 6= j. Equivalently, any variety X
can be uniquely expressed as a finite union of irreducible subvarieties Xi with Xi 6⊂ Xj

for i 6= j.

The varieties Xi appearing in this unique decomposition are called the irreducible
components of X.

Definition. Let X be a set of points in some space. A topology on X is a set T of
designated subsets of X, called the open sets of X, so that the following axioms are
satisfied:

(a) The union of any collection of open sets is open.
(b) The intersection of any finite collection of open sets is open.
(c) X and ∅ are open.

The closed sets in X are the complements of the open sets.

We define below the so–called Zariski topology on algebraic varieties. If we work
over C, every variety can be roughly viewed as a complex manifold X (with the
exception of a proper subset of its singular points). Through its embedding in, say,
Cn, X will inherit the usual complex analytic topology from Cn – a basis for the open
sets on X will consist of the intersections of X with any finite balls in Cn.

The Zariski topology is a different kind of topology. A basis for the open sets in X
is given by the sets

Uf = {p ∈ X | f(p) 6= 0}
where f ranges over polynomials (homogeneous if projective X).
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Lemma 2. The Zariski topology is indeed a topology on X.

Exercise. Show that the Zariski topology on the projective line P1
C is different from

the analytic topology of P1
C.

Many statements in algebraic geometry are true for general points on varieties, i.e.
if X is a variety and U is an open dense set of X, then any point p ∈ U is called a
general point on U . (If X is irreducible, then any nonempty open set will be dense.
This, in particular, makes Zariski topology a non-Housdorff topology – in the latter,
one needs for any two points of X to have two nonintersecting open sets containing
each one of the points. This confirms once again that the Zariski topology is much
coarser than the analytic topology.)

2. Bezout’s Theorem

Definition. Suppose that X and Y ⊂ Pn are two irreducible varieties and that their

intersection has irreducible components Zi. We say that X and Y intersect generically
transversally if, for each i, X and Y intersect transversally at a general point pi ∈ Zi,
i.e., are smooth at pi with tangent spaces spanning Tpi

(Pn) (the tangent space to Pn

at pi.)

Theorem 5. (Bezout) Let X and Y ⊂ Pn be subvarieties of pure dimensions k and
l with k + l ≥ n, and suppose they intersect generically transversely. Then

deg (X ∩ Y ) = deg(X) · deg(Y ).

In particular, if k + l = n, this says that X ∩Y will consist of deg(X) · deg(Y ) points.

A pair of pure–dimensional varieties X and Y ⊂ Pn intersect properly if their
intersection has the expected dimension, i.e.,

dim(X ∩ Y ) = dim(X) + dim(Y )− n.

Theorem 6. If X and Y intersect properly,

deg(X) · deg(Y ) =
∑

mZ(X, Y ) · deg(Z)

where the sum is over all irreducible subvarieties Z of the appropriate dimension (in
effect, over all irreducible components Z of X∩Y ). Here mZ(X, Y ) is the intersection
multiplicity of X and Y along Z:

1. mZ(X, Y ) ≥ 1 for all Z ⊂ X ∩ Y (mZ(X, Y ) = 0 otherwise.)

2. mZ(X, Y ) = 1 if X and Y intersect transversely at a general point of Z.

3. mZ(X, Y ) is additive, i.e. mZ(X ∪X ′, Y ) = mZ(X, Y ) + mZ(X ′, Y ) for any
X and X ′ as long as all three numbers are defined and X and X ′ have no
common components.
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In particular, for any subvarieties X and Y of pure dimension in Pn intersecting
properly:

deg(X ∩ Y ) ≤ deg(X) · deg(Y ).
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