LINEAR RECURSIVE SEQUENCES

BJORN POONEN

1. SEQUENCES

A sequence is an infinite list of numbers, like
(1) 1,2,4,8,16,32, . ...
The numbers in the sequence are called its terms. The general form of a sequence is
ay, s, as, . . .

where a,, is the n-th term of the sequence. In the example (1) above, a; = 1, ay = 2, ag = 4,
and so on.
The notations {a,} or {a,}>2, are abbreviations for

ai,as,as,....

Occasionally the indexing of the terms will start with something other than 1. For example,
{a,}22, would mean

ap, A1, a9, . ...

(In this case a,, would be the (n + 1)-st term.)

For some sequences, it is possible to give an explicit formula for a,: this means that a,, is
expressed as a function of n. For instance, the sequence (1) above can be described by the
explicit formula a,, = 2"~ 1.

2. RECURSIVE DEFINITIONS

An alternative way to describe a sequence is to list a few terms and to give a rule for
computing the rest of the sequence. Our example (1) above can be described by the starting
value a; = 1 and the rule a,,1 = 2a, for integers n > 1. Starting from a; = 1, the rule
implies that

as = 2a; = 2(1) = 2
as = 2(12 = 2(2) =4
as = 2a3 = 2(4) = 8,

and so on; each term in the sequence can be computed recursively in terms of the terms
previously computed. A rule such as this giving the next term in terms of earlier terms is

also called a recurrence relation (or simply recurrence).
1



2 BJORN POONEN

3. LINEAR RECURSIVE SEQUENCES
A sequence {a,} is said to satisfy the linear recurrence with coefficients ¢y, cx_1, ..., ¢ if
(2) CkUnik + Ck—10nyk—1 + -+ + C1Gnp1 + Coay =0

holds for all integers n for which this makes sense. (If the sequence starts with a, then this
means for n > 1.) The integer k is called the order of the linear recurrence.

A linear recursive sequence is a sequence of numbers ay, as, as, ... satisfying some linear
recurrence as above with ¢ # 0 and ¢y # 0. For example, the sequence (1) satisfies

Qpy1 — 20, =0
for all integers n > 1, so it is a linear recursive sequence satisfying a recurrence of order 1,
with ¢; = 1 and ¢g = —2.
Requiring ¢, # 0 guarantees that the linear recurrence can be used to express a,.; as a

linear combination of earlier terms:
G 1 Co
pik = ——Qpyk—1 — *** — —Apy1 — —Ap.
Ck Ck Ck
The requirement ¢y # 0 lets one express a,, as a linear combination of later terms:

G Ck—1 C1
Ap = ——Qpyk — ——Qpyk—1 — " — —Qp41.
Co Co Co

This lets one define ag, a_1, and so on, to obtain a doubly infinite sequence
s 0-2,0-1,00, 01,02, . ..

that now satisfies the same linear recurrence for all integers n, positive or negative.

4. CHARACTERISTIC POLYNOMIALS
The characteristic polynomial of a linear recurrence
Crlntk + Ch—10ntk—1 + -+ + C1Gpy1 + o0y =0
is defined to be the polynomial
cka:k + ck_lmk_l + -+ x4+ .
For example, the characteristic polynomial of the recurrence a, 1 — 2a,, = 0 satisfied by the
sequence (1) is z — 2.
Here is another example: the famous Fibonacci sequence
{F.}22,=0,1,1,2,3,5,8,13, ...
which can be described by the starting values Fy = 0, F} = 1 and the recurrence relation
(3) F,=F, 1+ F,_» for all n > 2.

To find the characteristic polynomial, we first need to rewrite the recurrence relation in
the form (2). The relation (3) is equivalent to

(4) Foo=F, 1+ F, for all n > 0.
Rewriting it as
(5) Fn+2_Fn+1_Fn:O

shows that {F},} is a linear recursive sequence satisfying a recurrence of order 2, with ¢; = 1,
c; = —1, and ¢y = —1. The characteristic polynomial is 2% — z — 1.
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5. IDEALS AND MINIMAL CHARACTERISTIC POLYNOMIALS

The same sequence can satisfy many different linear recurrences. For example, doubling (5)
shows the Fibonacci sequence also satisfies

2F, 9 —2F,,1 — 2F, =0,
which is a linear recurrence with characteristic polynomial 222 — 22 — 2. It also satisfies
Fois = Fopa — 1 =0,
and adding these two relations, we find that {F,} also satisfies
Fois+ Foio—3F,41 —2F, =0

which has characteristic polynomial 2® + 2% — 3z — 2 = (v + 2)(2® —x — 1).
Now consider an arbitrary sequence {a,}. Let I be the set of characteristic polynomials
of all linear recurrences satisfied by {a,}. Then
(a) If f(x) € I and g(x) € I then f(z) + g(z) € 1.
(b) If f(x) € I and h(z) is any polynomial, then h(z)f(x) € I.

In general, a nonempty set I of polynomials satisfying (a) and (b) is called an ideal.

Fact from algebra: Let [ be an ideal of polynomials. Then either I = {0} or else there is
a unique monic polynomial f(x) € I such that

I = the set of polynomial multiples of f(x) = { h(x)f(z) | h(z) is a polynomial }.

(A polynomial is monic if the coefficient of the highest power of x is 1.)

This fact, applied to the ideal of characteristic polynomials of a linear recursive sequence
{a,} shows that there is always a minimal characteristic polynomial f(x), which is the monic
polynomial of lowest degree in I. It is the characteristic polynomial of the lowest order non-
trivial linear recurrence satisfied by {a,}. The characteristic polynomial of any other linear
recurrence satisfied by {a,} is a polynomial multiple of f(x).

The order of a linear recursive sequence {a,} is defined to be the lowest order among all
(nontrivial) linear recurrences satisfied by {a,}. The order also equals the degree of the
minimal characteristic polynomial. For example, as we showed above, {F},} satisfies

Fn+3+Fn+2_3Fn+1_2Fn:07
but we also know that
Fn+2_Fn+1 _Fn:O7

and it is easy to show that {F,} cannot satisfy a linear recurrence of order less than 2,

so {F,} is a linear recursive sequence of order 2, with minimal characteristic polynomial

2 —x—1.

6. THE MAIN THEOREM

Theorem 1. Let f(z) = cpa® + -+ + ¢y be a polynomial with c;, # 0 and ¢y # 0. Factor
f(zx) over the complex numbers as

f(@) = cpla —r)™ (x —1ry)™ -+ (2 — 7)™,
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where r1,79,...,7r are distinct nonzero complexr numbers, and my, msq, ..., my are positive
integers. Then a sequence {a,} satisfies the linear recurrence with characteristic polynomial
f(x) if and only if there exist polynomials g1(n), go(n), ..., ge(n) with degg; < m; — 1 for
1=1,2,...,0 such that
an = 1(n)rf + -+ ge(n)ry for all n.
Here is an important special case.

Corollary 2. Suppose in addition that f(x) has no repeated factors; in other words suppose

that my =mg =---=my =1. Then f(x) = cp(x —r1)(x —1r9) - (x — 1) where ry,ro, ... 1y
are distinct nonzero complex numbers (the roots of f). Then {a,} satisfies the linear recur-
rence with characteristic polynomial f(x) if and only if there exist constants By, Bs, . .., By

(not depending on n) such that
an = Byr{ + -+ Byry for all n.

7. EXAMPLE: SOLVING A LINEAR RECURRENCE

Suppose we want to find an explicit formula for the sequence {a,} satisfying ag = 1,
a; =4, and
An41 + an
2

Since {a,} satisfies a linear recurrence with characteristic polynomial

x? — %x — % =(x—1)(z+ %), we know that there exist constants A and B such that

(7) Gy = A(L)" + B (-%)

for all n. The formula (7) is called the general solution to the linear recurrence (6). To find
the particular solution with the correct values of A and B, we use the known values of ag
and aq:

(6) Apio = for n > 0.

0
1:a0:A(1)0+B<—%) =A+B

4=a :A(1)1+B(—%>1 = A - B)2.

Solving this system of equations yields A = 3 and B = —2. Thus the particular solution is

1 n
n=3—2—-=1 .
a 3 < 2)

(As a check, one can try plugging in n =0 or n = 1.)

8. EXAMPLE: THE FORMULA FOR THE FIBONACCI SEQUENCE

As we worked out earlier, { F},} satisfies a linear recurrence with characteristic polynomial
r? — 2 — 1. By the quadratic formula, this factors as (z — a)(z — 3) where a = (1 +v/5)/2
is the golden ratio, and 8 = (1 —+/5)/2. The main theorem implies that there are constants
A and B such that

F, = Aa"™ + Bp"
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for all n. Using Fy = 0 and F; = 1 we obtain
0=A+B, 1 =Aa+ Bf.
Solving for A and B yields A =1/(a — ) and B = —1/(ac — f3), so

an—pr 1 1+v5\ [1-v5\
a—-8 2 B 2

F, = —
9. EXAMPLE: FINDING A LINEAR RECURRENCE FROM AN EXPLICIT FORMULA

a=p3 V5

for all n.

Let a, = (n+2")F,, where {F},} is the Fibonacci sequence. Then by the explicit formula
for F,,

an = (n+2") <—aa = gn>

) Ka . ﬁ> ”] o Koz_—1ﬁ> ”] . (a - ﬁ) (20)" + (ﬁ) )"

By Theorem 1, {a,} satisfies a linear recurrence with characteristic polynomial
(2= a)2(a — B)*(x — 20) (¢ — 28) = (2? = — 1)? [a® — 2(a + B) + 4af]
= (22 —x —1)*(2* — 27 — 4)
= 2% — 42° — 2% 4 122° + 2% — 10z + 4,

where we have used the identity 22 — (a + 8)z + a8 = 2*> — z — 1 to compute a + 3 and af3.
In other words,

nie — 4dapss — apag + 120,13 + apyo — 10ay,1 + 4a, =0

for all n. In fact, we have found the minimal characteristic polynomial, since if the actual
minimal characteristic polynomial were a proper divisor of (z? — z — 1)?(2? — 22 — 4), then
according to Theorem 1, the explicit formula for a,, would have had a different, simpler form.

10. INHOMOGENEOUS RECURRENCE RELATIONS
Suppose we wanted an explicit formula for a sequence {a,} satisfying ag = 0, and
(8) Upi1 — 20, = F, for n >0,

where {F,} is the Fibonacci sequence as usual. This is not a linear recurrence in the sense
we have been talking about (because of the F,, on the right hand side instead of 0), so our
usual method does not work. A recurrence of this type, linear except for a function of n on
the right hand side, is called an inhomogeneous recurrence.

We can solve inhomogeneous recurrences explicitly when the right hand side is itself a
linear recursive sequence. In our example, {a,} also satisfies

(9) Apt2 — 20p41 = Fpq
and

(10) Unt3 — 2an42 = Foypo.
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Subtracting (8) and (9) from (10) yields
Ap+3 — 3an+2 + Apy1 + 2a, = n+2 — Fn+1 — F, =0.

Thus {a,} is a linear recursive sequence after alll The characteristic polynomial of this new
linear recurrence is 3 — 32? + x + 2 = (z — 2)(2* — x — 1), so by Theorem 1, there exist
constants A, B, C' such that

a, =A-2"+ Ba" 4+ Cp"
for all n. Now we can use ap = 0, and the values a; = 0 and as = 1 obtained from (8) to

determine A, B, C. After some work, one finds A = 1, B = —a?/(a—/3), and C = 3?/(a—f3),

SO @y = 2" — Fiyo.
If {x,} is any other sequence satisfying
(11) Tpy1 — 2x, = F,

but not necessarily zo = 0, then subtracting (8) from (11) shows that the sequence {y,}
defined by y,, = x,, — a,, satisfies y,+1 — 2y, = 0 for all n, so y, = D - 2" for some number D.
Hence the general solution of (11) has the form

Ty =2"—F, o+ D 2"
or more simply,
xn:E2n_ n+2;
where FE is some constant.
In general, this sort of argument proves the following.

Theorem 3. Let {b,} be a linear recursive sequence satisfying a recurrence with character-
istic polynomial f(x). Let g(x) = cpa® + cp_12* L + - + 1w + o be a polynomial. Then
every solution {x,} to the inhomogeneous recurrence

(12) CkThak + Ck—1Tpip—1 + -+ C1Tp1 + Coxp = by

also satisfies a linear recurrence with characteristic polynomial f(x)g(z).
Moreover, if {x,} = {a,} is one particular solution to (12), then all solutions have the
form x, = a, + yn, where {y,} ranges over the solutions of the linear recurrence

CklYn+k + Ch—1Yntk—1 + ++ + C1Yns1 + Coyn = 0.

11. THE MAHLER-LECH THEOREM

Here is a deep theorem about linear recursive sequences:

Theorem 4 (Mahler-Lech theorem). Let {a,} be a linear recursive sequence of complex
numbers, and let ¢ be a complex number. Then there exists a finite (possibly empty) list of
arithmetic progressions Ty, Ty, ... T, and a finite (possibly empty) set S of integers such
that

{n|la,=c}=SUn1UT,U---UT,.

Warning: don’t try to prove this at home! This is very hard to prove. The proof uses
“p-adic numbers.”
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12. PROBLEMS

There are a lot of problems here. Just do the ones that interest you.

(1) If the Fibonacci sequence is extended to a doubly infinite sequence satisfying the
same linear recurrence, then what will F_4 be? (Is it easier to do this using the
recurrence, or using the explicit formula?)

(2) Find the smallest degree polynomial that could be the minimal characteristic poly-
nomial of a sequence that begins

2,5,18,67,250,933, .. ..

Assuming that the sequence is a linear recursive sequence with this characteristic
polynomial, find an explicit formula for the n-th term.

(3) Suppose that a, = n* + 3n + 7 for n > 1. Prove that {a,} is a linear recursive
sequence, and find its minimal characteristic polynomial.

(4) Suppose a; = ay = a3 = 1, ay = 3, and a,+4 = 3a,12 — 2a, for n > 1. Prove that
a, = 1 if and only if n is odd or n = 2. (This is an instance of the Mahler-Lech
theorem: for this sequence, one would take S = {2} and 77 = {1,3,5,7,...}.)

(5) Suppose ag = 2, a; = 5, and a, 19 = (an11)*(a,)? for n > 0. (This is a recurrence
relation, but not a linear recurrence relation.) Find an explicit formula for a,,.

(6) Suppose {a,} is a sequence such that a, s = a,41 — a, for all n > 1. Given that
asg = 7 and ass = 3, find a;. (Hint: it is possible to solve this problem with very
little calculation.)

(7) Let 0 be a fixed real number, and let a,, = cos(n#) for integers n > 1. Prove that
{a,} is a linear recursive sequence, and find the minimal characteristic polynomial.
(Hint: if you know the definition of cosx in terms of complex exponentials, use that.
Otherwise, use the sum-to-product rule for the sum of cosines cos(nf)+cos((n+2)0).
For most but not all 8, the degree of the minimal characteristic polynomial will be 2.)

(8) Give an example of a sequence that is not a linear recursive sequence, and prove that
it is not one.

(9) Given a finite set S of positive integers, show that there exists a linear recursive
sequence

ai, ds, ag, ...

such that {n |a,=0}=5.

(10) A student tosses a fair coin and scores one point for each head that turns up, and
two points for each tail. Prove that the probability of the student scoring n points
at some time in a sequence of n tosses is 3 (2 + (—3)").

(11) Let F, denote the n-th Fibonacci number. Let a, = (F,)?. Prove that ay, as,as, . ..
is a linear recursive sequence, and find its minimal characteristic polynomial.

(12) Prove the “fact from algebra” mentioned above in Section 5. (Hint: if I # {0}, pick
a nonzero polynomial in [ of smallest degree, and multiply it by a constant to get a
monic polynomial f(z). Use long division of polynomials to show that anything else
in [ is a polynomial multiple of f(z).)

(13) Suppose that aj,as, ... is a linear recursive sequence. For n > 1, let s,, = a1 + as +
-+ +a,. Prove that {s,} is a linear recursive sequence.

(14) Suppose {a,,} and {b,} are linear recursive sequences. Let ¢, = a,,+b, and d,, = a,,b,
for n > 1.
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(a) Prove that {¢,} and {d,} also are linear recursive sequences.

(b) Suppose that the minimal characteristic polynomials for {a,} and {b,} are
2? —x — 2 and 2% — 5x + 6, respectively. What are the possibilities for the minimal
characteristic polynomials of {c,} and {d,,}?

(15) Suppose that {a,} and {b,} are linear recursive sequences. Prove that
ai, b17 Qg, b27 as, b37 s

also is a linear recursive sequence.
(16) Use the Mahler-Lech theorem to prove the following generalization.
Let {a,} be a linear recursive sequence of complex numbers, and let p(z) be a
polynomial. Then there exists a finite (possibly empty) list of arithmetic progressions
T, Ty, ... T,, and a finite (possibly empty) set S of integers such that

{n|a,=pn)} =SUTHUTLU---UT,.

(Hint: let b, = a, — p(n).)
(17) (1973 USAMO, no. 2) Let {X,,} and {Y,,} denote two sequences of integers defined
as follows:

Xo=1,X1=1,Xpi1 = Xn+2X,1 (n=1,2,3,...),
Yo=1,Y1=7Y,,1=2Y,4+3Y,1 (n=1,2,3,...).
Thus, the first few terms of the sequences are:
X :1,1,3,5,11,21,...,
Y :1,7,17,55,161,487, . . ..

Prove that, except for the “1,” there is no term which occurs in both sequences.
(18) (1963 IMO, no. 4) Find all solutions x1, xs, T3, T4, 5 to the system

Ty + To = Yx1
1+ Ty = Yxa
Lo+ Ty = YT3
T3+ Ty = YTy

T4+ 21 = YTs,

where y is a parameter. (Hint: define xg = 1, 27 = x9, etc., and find two different
linear recurrences satisfied by {z,}.)

(19) (1967 IMO, no. 6) In a sports contest, there were m medals awarded on n successive
days (n > 1). On the first day, one medal and 1/7 of the remaining m — 1 medals
were awarded. On the second day, two medals and 1/7 of the now remaining medals
were awarded; and so on. On the n-th and last day, the remaining n medals were
awarded. How many days did the contest last, and how many medals were awarded
altogether?

item (1974 IMO, no. 3) Prove that the number >} _, (%fjll) 23% is not divisible by 5
for any integer n > 0.

(20) (1980 USAMO, no. 3) Let F,. = 2" sin(rA)+y" sin(rB)+2" sin(rC), where z,y, 2, A, B, C
are real and A+ B + C' is an integral multiple of 7. Prove that if F; = F, = 0, then
F,. = 0 for all positive integral r.
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