
Berkeley Math Circle: Monthly Contest 5 Solutions

1. Define the function f on the positive integers such that

f(x) =

{
x
2 if x is even,

5x+ 1 if x is odd.

Find the smallest positive integer n for which there does not exist some positive
integer m such that fm(n) = 1. (In other words, we want the smallest n such that
f(n) ̸= 1, f(f(n)) ̸= 1, f(f(f(n))) ̸= 1, f(f(f(f(n)))) ̸= 1, and so on.)

SOLUTION. We have 1 = 1, f(2) = 1, f5(3) = f4(16) = f3(8) = f2(4) = f(2) =
1, and f2(4) = f(2) = 1. Also, note that f2(5) = f(26) = 13, and

f10(13) = f9(66) = f8(33) = f7(166) = f6(83) = f5(416) = f5(32 · 13) = 13.

Hence the values of f i(5) for i ≥ 3 cycle among {13, 66, 33, 166, 83, 416, 208, 104, 52, 26},
implying that there is no m such that fm(n) = 1. Thus our answer is 5 .

2. Completely factor N = 230 − 1 into prime numbers.

SOLUTION. Using the factorizations x2−1 = (x−1)(x+1), x3−1 = (x−1)(x2+
x+ 1), and x3 + 1 = (x+ 1)(x2 − x+ 1), we find that

N = 230−1 = (215−1)(215+1) = (25−1)(210+25+1)(25+1)(210−25+1) = 31·1057·33·993.

By inspection, we note that 33 = 3 · 11, 1057 = 7 · 151, and 993 = 3 · 331, with both
151 and 331 being prime numbers, so our final factorization is

N = 31 · (7 · 151) · (3 · 11) · (3 · 331) = 32 · 7 · 11 · 31 · 151 · 331 .

3. Jessica owns four pairs of socks, which come in four different colors: ultramarine,
vermilion, wisteria, and xanthous. Each Wednesday, she does her laundry, and every
time exactly one sock goes missing.

(a) List all possible color combinations for her four pairs of socks. Here, two color
combinations are considered the same if the number of pairs of socks of the
same color match; for example, having three pairs of ultramarine socks and one
pair of vermilion socks and having three pairs of vermilion socks and one pair
of wisteria socks are considered the same.

(b) For each of the color combinations above, calculate the time, in weeks, until
she runs out of socks to wear. Assume that she wears only matching socks at
any given time, so that if she has just one sock of a given color, she throws that
useless sock away.
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SOLUTION.

(a) Observe that Jessica’s options amounts to listing the ways to split 4 into distinct
groups of addends, as given below.

i. (4)

ii. (3, 1)

iii. (2, 2)

iv. (2, 1, 1)

v. (1, 1, 1, 1)

Note that we list all available options without permutations. For example,
splitting the color combinations between (3, 1) and (1, 3) are considered the
same, because they do not affect the time until she runs out of socks.

In particular, these correspond to the possible color combinations for Jessica’s
four pair of socks, namely, as enumerated below.

i. 4 pairs of the same color

ii. 3 pairs of one color and 1 pair of another color

iii. 2 pairs of one color and 2 pairs of another color

iv. 2 pairs of one color, 1 pair of another color, and 1 pair of yet another color

v. All four pairs are of different colors , so that we have 1 pair of one color,
1 pair of another color, 1 pair of yet another color, and 1 pair of a final
different color

(b) Now we go through each of the five options, enumerated in the above order, to
determine how many weeks it will take for Jessica to run out of socks to wear.

Consider option 1. This option means that all 4 pairs have the same color and,
therefore, they are all interchangeable. Since one sock gets lost once a week,
her total supply will still be wearable until it gets down to one sock, which will
take 7 weeks.

Consider option 2. View this case as a case with two pools of socks, consisting
respectively of 6 socks and 2 socks. Jessica will run out of socks when both
pools are down to one sock, regardless of which pool is depleted first. The first
pool alone can provide Jessica with 5 weeks of wearing, and the second with 1
week. The lost socks from both pools can be interspersed, which does not affect
the total duration since it lasts until both pools are exhausted. Therefore, the
answer is 1 + 5 = 6 weeks.

Consider option 3. This case is similar to the previous one. Now we have two
pools of socks which consist of 4 socks and 4 socks, respectively. Each pool
alone can provide Jessica with 3 weeks of wear and the exact order in which
the socks get lost again does not matter. The answer is 3 + 3 = 6 weeks.

Consider option 4. By the same logic as above, now we have 3 pools of socks,
each of which alone can last for 3, 1 and 1 weeks, respectively. This implies
that the answer is 3 + 1 + 1 = 5 weeks.

Consider option 5. This option means that each pair has its unique color and
the loss of each sock results in losing the whole pair. Since each pair lasts for
just one week, the entire set will last for 4 weeks.
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4. Six mathematicians stand around a tree in a circle. Each has a hat whose color is
randomly either red or blue. They cannot see the color of their own hat, nor the
color of the hat of the person across from them, but they can see the hats of the
four other mathematicians. If they can pick their strategy beforehand, what is the
maximum chance they could have for everyone silently guessing their hat color right?

SOLUTION. The chances that two mathematicians directly across from each other
guess right are independent, with each individual probability being 1

2 because they
cannot see or control the colors of their own hats. Thus the answer is at most
(12)

2 = 1
4 . We show that this is possible.

Split the mathematicians, based on position, into two equilateral triangles. Their
strategy will be to guess based off of the assumption that both triangles have an
odd number of red hats and deduce the color of their own hat from those in their
triangle. The chance they win is then the probability that this assumption is true,
which occurs with probability (

1

2

)2

=
1

4
.

5. Fix some positive integer n, and consider all convex polygons P with n sides. For
each such P , draw n circles, with each side being a diameter. Prove that there exists
some polygon P and point X in the interior of P , with X uncovered by the n circles,
iff n ≥ 5.

SOLUTION. Call an n-gon P coverable if it is fully covered by the n circles with
diameter given by the sides P . We say that some n is coverable iff all n-gons are
coverable. It suffices to prove that the only coverable integers are 3 and 4.

We first prove that all quadrilaterals are coverable. By contradiction, assume that
there is a point X inside a quadrilateral ABCD which none of the four circles
covers. In particular, since X is outside the circle with diameter AB, our exterior
point condition yields that ∠AXB < 90◦. Analogous logic similarly implies that
∠BXC < 90◦, ∠CXD < 90◦, and ∠DXA < 90◦, from which summing yields
∠AXB + ∠BXC + ∠CXD + ∠DXA < 360◦, a contradiction.

C

D

AB

X

One can check that all triangles are coverable via a directly analogous argument. In
particular, the above arguments imply that 3 and 4 are both coverable.
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Now we show that any n ≥ 5 is not coverable by showing that such a regular n-gon
is not coverable.

In particular, draw a circle centered at X and inscribe a regular polygon with n > 4
in that circle. Let AB be a side of the polygon with midpoint M . As n ≥ 5, we have
∠AXB < 90◦ and thus ∠AXM < 45◦. Hence AM < XM , so the circle constructed
on AB as a diameter does not reach X. The same applies to all n sides of the regular
polygon, which shows that the regular n-gon is not coverable with respect to X.

A B

X

M

As an extra remark, note that it does not follow that any n-gon with n ≥ 5 is not
coverable. In particular, let AB be the longest side of the polygon. Considering a
circle with diameter AB, and choose one of the two arcs defined with endpoints at
A and B. Pick n − 2 points X1, X2, . . . , Xn−2 arbitrarily on that arc; the polygon
defined by the resulting n points A,X1, X2, . . . , Xn−2, B is entirely covered by the
circle with diameter AB and is therefore coverable.

6. Prove that tan 1◦ is an irrational number.

SOLUTION. First, consider angles α and β such that tanα and tanβ are both
rational. Then it follows that

tan(α+ β) =
tanα+ tanβ

1− tanα tanβ

must also be a rational number.

Now let us assume by contradiction that tan 1◦ is a rational number. Applying
the above observation on β = 1◦ yields that tan(α+ 1◦) is rational if tanα is also
rational, from which inducting down implies that tanx◦ is rational for all integers
x. But plugging in x = 60 results in

√
3 = tan 60◦ being rational, a contradiction.

7. Let a1, a2, a3, b1, b2, b3 be arbitrary positive numbers. Prove that

(a71 + a72 + a73)(b
7
1 + b72 + b73) ≥ (a41b

3
1 + a42b

3
2 + a43b

3
3)(a

3
1b

4
1 + a32b

4
2 + a33b

4
3).

SOLUTION. Define xi = a7i and yi = b7i for any i ∈ {1, 2, 3}. Applying Hölder’s
Inequality on the xi and yi with

3
7 and 4

7 being the respective exponents, we find
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that

(x1 + x2 + x3)
3
7 (y1 + y2 + y3)

4
7 ≥ 7

√
x31y

4
1 +

7

√
x32y

4
2 +

7

√
x33y

4
3.

Similarly, applying Hölder’s Inequality on the xi and yi again, but this time using 4
7

and 3
7 as the respective exponents, it then follows that

(x1 + x2 + x3)
4
7 (y1 + y2 + y3)

3
7 ≥ 7

√
x41y

3
1 +

7

√
x42y

3
2 +

7

√
x43y

3
3.

Multiplying the two above inequalities then gives

(x1+x2+x3)(y1+y2+y3) ≥
(

7

√
x31y

4
1 +

7

√
x32y

4
2 +

7

√
x33y

4
3

)(
7

√
x41y

3
1 +

7

√
x42y

3
2 +

7

√
x43y

3
3

)
.

Substituting in xi = a7i and yi = b7i into the above then gives

(a71 + a72 + a73)(b
7
1 + b72 + b73) ≥ (a41b

3
1 + a42b

3
2 + a43b

3
3)(a

3
1b

4
1 + a32b

4
2 + a33b

4
3),

as desired.
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