
Berkeley Math Circle: Monthly Contest 4 Solutions

1. Let S be the region in the Cartesian plane containing exactly the points satisfying

y ≥ 5x− 20,

y ≥ 0,

y ≥ 2− x,

y ≤ 2x+ 2,

3y − 20 ≤ −x.

Let f(x, y) = 2x− 3y. Find the minimum and maximum of f as it ranges across S.

SOLUTION. Observe that the system of five inequalities above defines a convex
pentagon P in the Cartesian plane. We claim that f reaches its minimum and
maximum at vertices of P .

By way of contradiction, assume first that the minimum is reached at some point
(x0, y0) strictly in the interior of P . Since f(x, y) is a linear function, it is linear
along any straight line passing through (x0, y0). Now consider any line crossing the
boundary of P twice, say at (x1, y1) and (x2, y2). Then by linearity at least one
of f(x1, y1) and f(x2, y2) will be at least the value of f(x0, y0). If both values are
equal to f(x0, y0), it follows that f is constant everywhere along the line, so that the
minimum is still attained at (x0, y0); otherwise, exactly one of f(x1, y1) and f(x2, y2)
will be smaller than f(x0, y0), a contradiction.

Observe that a similar argument holds if the same minimum is attained on the
boundary of P but not at the vertices, and analogously in the case of maxima. In
particular, f attains its extrema at the vertices of P .

One can compute by graphing and intersecting the equations of the lines of the
adjacent sides that the five vertices of P are (5, 5), (4, 0), (2, 0), (0, 2), and (2, 6),
with f(5, 5) = −5, f(4, 0) = 8, f(2, 0) = 4, f(0, 2) = −6, and f(2, 6) = −14. From
here, it thus follows that the minimum of f on P is −14, attained at (2, 6), while
the maximum is 8 and is attained at (4, 0).

2. Let a be a three-digit number with middle digit 0. Another three-digit number b is
formed by reversing the digits of a. Prove that a+ b cannot be a perfect square.

SOLUTION. By construction, there must exist digits m and n with a = 100m+n
and b = m+ 100n, so that a+ b = 101(m+ n). Since 101 is prime and m+ n ≤ 18,
it follows that 101 | a+ b but 1012 ∤ a+ b, so a+ b cannot be a perfect square.

3. Let ABCD be a cyclic quadrilateral with ω and O being its circumcircle and cir-
cumcenter, respectively. Suppose that AC ⊥ BD. Let P be the intersection of the
diagonals AC and BD Given that AP = DP = 1 and BP = CP = 2, compute the
area bounded by BP , CP , and ω in terms of ∠BOC, represented in radians.
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SOLUTION. We first scale up our quadrilateral by a factor of 2 and place our
points on the Cartesian plane as P ′ = (0, 0), A′ = (−2, 0), B′ = (0, 4), C ′ = (4, 0),
andD′ = (0,−2). One can check by inspection that the circumcenter O′ of A′B′C ′D′

is at (1, 1) and that ω has radius
√
10.

The area of the desired scaled region is the area of sector B′O′C ′ plus the area of
the two triangles △P ′O′B′ and △P ′O′C ′, which evaluates to

[B′O′C ′] + [△P ′O′B′] + [△P ′O′C ′] =

(
∠B′O′C ′

2π

)(
π(
√
10)2

)
+

4 · 1
2

+
1 · 4
2

= 5∠BOC + 4,

where ∠B′O′C ′ = ∠BOC since scaling preserves angles. Rescaling then implies that

our original desired area is
5∠BOC

4
+ 1 .

4. What is the period of the 20236
1142026

when written as a repeating decimal, when ex-
pressed in base 6? Here, the subscript of 6 represents base-6 notation.

SOLUTION. For notational clarity, all numbers will be in base 10 unless otherwise
noted by a subscript.

We begin by converting the fraction to base 10, giving

20236
1142026

=
447

10010
=

3 · 149
2 · 5 · 7 · 11 · 13

.

Now observe that any repeating decimal will have a finite number of digits followed
by an infinitely repeating segment of minimal length k so that

447

10010
=

m0

6m
+

∞∑
i=1

k0
6m+ik

=
m0

6m
+

k0
6m(6k − 1)

=
k0 + (6k − 1)m0

6m(6k − 1)
,

where k is minimal and positive,m,m0, and k0 are nonnegative integers with k0 > 6k.

Taking modulo 6k − 1, any positive integer m1 can be written in the form k′0 +
(6k

′ − 1)m′
0 for some fixed k′, nonnegative k′0 < 6k

′
, and nonnegative m′

0. Hence by
minimality it suffices to find the minimal k for which there exists some m1 with

m1

6m(6k − 1)
=

447

10010
.

Since gcd(447, 10010) = 1 and 2 | 6m, this occurs iff 5005 | 6k − 1, so it suffices to
find the minimal k satisfying 5005 | 6k − 1.

Since 5005 = 5 · 7 · 11 · 13, it follows that

k = lcm(ord5(6), ord7(6), ord11(6), ord13(6)),

where b = ordp(a) is the minimal integer exponent such that ab ≡ 1 (mod p). Since
6 ≡ 1 (mod 5) and 62 ≡ 1 (mod 7), we get ord5(6) = 1 and ord7(6) = 2. For
the case of p = 11, Fermat’s Little Theorem yields that 610 ≡ 1 (mod 11) and
thus ord11(6) | 10. We can check that 61, 62, and 65 are all not 1 modulo 10, so
ord11(6) = 10. Similarly, if p = 13, we can check that ord13(6) = 12. Thus

k = lcm(10, 12, 2) = 60 .
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5. Aerith and Bob play a game on an infinite lattice. On each of their turns, they may
write 14 or 16 on a square of the lattice, 8 or 10 on a vertex, or an integer between
1 and 5, inclusive, on an edge. Bob wins if there are four numbered edges each
adjacent to a numbered vertex whose sum is less than or equal to the number on the
vertex, and where no more than two edges share a number. Aerith wins if there are
four numbered edges each adjacent to a numbered square whose sum is greater than
or equal to the number on the square, and where no more than two edges share a
number. Show that Aerith can always stop Bob from winning if she goes first.

SOLUTION. Suppose by contradiction that assume that Bob has a winning strat-
egy when Aerith goes first.

First, claim that if Bob has a winning strategy when Aerith goes first, then Bob
has a winning strategy when he goes first. In particular, Bob could start by placing
the number 10 on a vertex and make moves by ignoring the 10 as if he had gone
second. Since a 10 on a vertex is strictly better than an 8 for Bob and Aerith’s win
condition does not care about number on vertices, it follows that the 10 will never
sabotage Bob’s plane; indeed, even if his winning strategy involved playing on that
vertex, but then he could just write a 10 on a different vertex and pretend to ignore
the new 10, since the grid is infinite and a 10 is more optimal than an 8 for Bob.

It thus suffices to prove that if Bob has a winning strategy going first, then Aerith also
has a winning strategy going first, as this would contradict our original assumption
that Bob has a winning strategy when Aerith goes first.

To this end, consider the infinite dual lattice where its vertices correspond to squares
of the game lattice, edges correspond to edges, and squares correspond to vertices.
Set up a one-to-one correspondence between games on the dual lattice and the origi-
nal lattice by stating that the placement of a number k on an edge of the dual lattice
corresponds to the placement of 6−k on the corresponding edge of the original, and
the placement of a number n on a vertex or square corresponds to the placement of
24− n on the corresponding square or vertex of the original lattice, respectively.

Furthermore, state that Bob, instead of Aerith, wins on the dual lattice if there are
four numbered edges, no more than two of which share a number, each adjacent
to a numbered square on the dual lattice whose sum is greater than or equal to
the number on the square, and that Aerith, instead of Bob, wins if there are four
numbered edges, no more than two of which share a number, each adjacent to a
numbered vertex whose sum is less than or equal to the number on the vertex.

In particular, observe that a game on the dual lattice and a game on the original
lattice correspond exactly to one another. Therefore, if Bob has a winning strategy
going first on the original lattice, he has a winning strategy going first on the dual
lattice by playing the corresponding moves to his strategy on the original lattice,
which in turn implies that Aerith has a winning strategy going first on the original
lattice since she wins on the original lattice iff Bob wins on the dual lattice. This is
our desired contradiction.

6. Let p be an odd prime, and define the polynomial f(x) = xp+1 + (1− p)xp − p.

(a) Prove that x+ 1 divides f(x).

(b) Let g(x) = f(x)
x+1 . Prove that g(x) is irreducible.
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SOLUTION.

(a) Since p is odd, note that

f(−1) = (−1)p+1+(1−p)(−1)p−p = 1+(1−p)(−1)−p = 1+(p−1)−p = 0.

Hence −1 is a root of f , so it follows that x− (−1) = x+ 1 must divide f .

(b) Note that

f(x) = xp+1 + (1− p)xp − p = (xp+1 + xp)− (pxp + p) = xp(x+ 1)− p(xp + 1).

Since p is odd, we use the factorization xp+1 = (x+1)(xp−1−xp−2+ · · ·−x+1)
to get that

g(x) =
f(x)

x+ 1
=

xp(x+ 1)− p(xp + 1)

x+ 1
= xp − p(xp−1 − xp−2 + · · · − x+ 1).

Letting ai be the coefficient of the unique monomial degree of degree i in the
g(x) expression above, we observe that |ai| = p for all i ∈ {0, 1, · · · , p− 1} and
ap = 1. In particular, we note that p2 ∤ a0 and p ∤ ap, implying by Eisenstein’s
Criterion on the prime p that g(x) is irreducible, as desired.

7. A toroidal helix is a curve c(t) on a torus so that each angle function is a linear
function of t. Note that a torus, thought of as a circle revolved around a line, has
two angle functions, namely the angle of revolution and the angle on the circle.

(a) How many ways can one place a rectangular grid with 130 squares on a torus?
The rectangular grid is generated by dividing the torus into 130 regions, defined
by two families of non-intersecting toroidal helices that always meet at 90◦.

(b) What about a hexagonal grid with 105 hexagons on a torus? The hexagonal
grid is generated similarly, using 3 families of non-intersecting toroidal helices
that always meet at 60◦.

Two grids are considered the same if the induced graph structures are equivalent, so
that there is a one-to-one correspondence between regions that preserves adjacency.

Hint: read about universal covering manifolds, flat tori, and Dedekind’s second proof
(1894) of Fermat’s Theorem on sums of squares.

SOLUTION.

(a) The problem asks to find the number of ways to place a square grid with 130
squares on a torus. For clarity, we present a step-by-step approach.

Step 1. First, unfold the torus into a rectangle as depicted here.

Step 2. Now, take this rectangle and place it in the coordinate plane, according to
the grid we created.

Step 3. From here, we can see that the torus is determined by the position of the
four corners of this rectangle in the plane. In fact, the grid on the torus is
uniquely determined by the position of these four corners up to Euclidean
motions (translation, rotation, reflection).
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Step 4. Because we don’t want to overcount, we note that the grid on the torus is
uniquely determined by this rectangle, up to Euclidean motion (i.e. trans-
lation, rotation, reflection). For this, we move some vertex to the origin
and write the adjacent vertices as (a, b) and (c, d). From here, the require-
ment that they are orthogonal can be written as ac+ bd = 0 and the area
is given by ad− bc = 130.

Step 5. The key observation is that this can be written in complex numbers as

(a+ bi)(d+ ci) = 130

Thus, we only need to find the factors of 130 over the complex integers.

Step 6. We claim that the prime factorization is

130 = (1 + i)(1− i)(2 + i)(2− i)(3 + 2i)(3− 2i)

To see why, let N(z) = zz be the norm-squared of a complex number. If
z is a complex integer then N(z) is also a complex integer, and N also
satisfies N(wz) = N(w)N(z). Now, we can check by inspection that each
of the factors listed has prime N , and that any further factorization would
require a factor z with N(z) = 1, which can only occur when z = ±1 or
z = ±i. To see where we got these factors, just try to write each prime as
a sum of squares. For example, 13 = 32 + 22 = (3 + 2i)(3− 2i).

Step 7. We digress briefly to discuss prime factorization. Prime factorization is
unique up to ordering of the primes and multiplication by ±1. Over the
complex integers, it works out much the same way, except it works up to
multiplication by ±1 and ±i. Thus, 130 has 5 distinct prime factors, where
(1 + i) = i(1 − i) is repeated. Thus, while the total number of factors is
4 · 3 · 24 = 192

Step 8. In particular, we would like to find the number of pairs (x, y) with xy = 130
where we consider pairs equivalent if they are conjugate, reversed, or change
sign. That is,

(x, y), (ix, iy), (x, y), (y, x)

all generate the same grid on the torus. Let us say that a complex number
is special if it is either real, pure imaginary, or its real and imaginary parts
are equal up to sign. This occurs if it lies on the coordinate axes or it does
when it is rotated 45◦. We divide the factors into several cases:

1. x and y are not special and x ̸= y

2. Both x and y are special, and x ̸= y

3. The property x = y is satisfied.

Note that it is not possible for one of them to be special and the other is
not, because the angle of x is the negative of the angle of y.

In the first case, there are 16 equivalent pairs because there are four choices
of sign, and we could take the conjugate of both, and we could swap x and
y, and all of these generate distinct rectangles.

In the second case, there are 8 equivalent pairs, because taking conjugates
does not generate distinct pairs (they are equal up to ±1 or ±i). We can
count the number of possibilities here by adding the 32 real/imaginary
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factors of 130 to the 16 factors that lie on the lines of slope ±45◦ to get a
total of 48 factors, with 6 distinct pairs.

In the third case, we deduce that x is given by partitioning the prime
factors of 130 into two conjugate subsets. There are are 4 ways to do
this, and 16 ways allowing for multiplication by units (i.e. ±1 and ±i).
Now, each of these generates 8 equivalent pairs unless x is special, which
is not possible because that would require that 130 or 130

2 is a perfect
square, so we have 2 new distinct pairs. These come from the factorizations
130 = (11 + 3i)(11− 3i) and 130 = (9 + 7i)(9− 7i).

We have 192 factors in total, and 192−48−16 = 128 pairs in the first case,
of which 128

16 = 8 are distinct. Therefore, we have a total of 8+6+2 = 16
distinct rectangles.

(b) Now, for the hexagonal case, we give just a sketch. We work in coordinate given
on a hexagonal grid and use the Eisenstein integers Z[ω] instead of the complex
(Gaussian) integers. The orthogonality condition is then given, in combination
with the area condition, as (a+ bω)(c− dω) =

√
32 · 105i = 105(ω + 1

2), which

is not an Eisenstein integer. It follows that there are 0 solutions because 105
is odd. On the other hand, if we had picked an even integer, we would proceed
analogously to as in (a).
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