Berkeley Math Circle: Monthly Contest 1 Solutions

1. If integers a, b, c, d are such that $a+b=c+d$, prove that $a b c d+1$ is not a multiple of three.

SOLUTION. If any of $a b c d$ are divisible by 3 , this is clear. Otherwise, all numbers are 1 or 2 modulo 3 , so all possible sums $a+b$ are $1+1,1+2$, and $2+2$. These have distinct residues modulo 3 , so $\{a, b\} \equiv\{c, d\}(\bmod 3)$. Thus, $a b \equiv c d(\bmod 3)$, so $a b c d$ is a perfect square modulo 3 and thus cannot be 2 , as desired.
2. Let A, B, C, D, E be five points in the plane satisfying $A B=B C=C D=D E=E A$ and $A C=C E=E B=B D=D A$. Show that $A B C D E$ is a regular pentagon.

SOLUTION. We have $y=\angle E A B=\angle A B C=\angle B C D=\angle C D E=\angle D E A$ by SSS congruence. Let $y=180-x$ for some $0<x<180$. Then the angle between vectors $A B$ and $B C$ is x, and the same holds cyclically. Thus $\pm x \pm x \pm x \pm x \pm x$ is a multiple of 360 , so $x=\frac{360 m}{n}$ for some odd $n \leq 5$. Since n cannot be 1 , and one can check by hand that it cannot be 3 , all the \pm signs have the same orientation, giving the desired.
3. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying $f(x)+f(y)-f(x+y)=f(x y+1)$ for all integers x and y.

SOLUTION. Setting $x=y=0$, we instantly find that $f(0)+f(0)-f(0)=f(1)$, simplifying to $f(0)=f(1)$.
Setting $x=1$ and $y=-1$, we then find that $f(-1)+f(1)-f(0)=f(0)$. Since $f(0)=f(1)$, this implies that $f(-1)=f(0)$.
Next, we prove by induction on $|m|$ that $f(m)=f(0)$ for all integers m.
Our base case, with $|m|=1$, has already been completed. Therefore, it suffices to show that if $f(m)=f(0)$ for all $|m|=n$, then $f(n+1)=f(-n-1)=f(0)$.
Setting $x=-1$ and $y=n+1$ in our original equation, we find that

$$
f(-1)+f(n+1)-f(n)=f(-n)
$$

Because $f(n)=f(-n)=f(0)$ by the inductive hypothesis and we already know that $f(-1)=f(0)$, the above reduces to $f(n+1)=f(0)$.

Then, setting $x=1$ and $y=-n-1$ in our original equation, we find that

$$
f(1)+f(-n-1)-f(-n)=f(-n)
$$

Again by the inductive hypothesis, we know that $f(-n)=f(0)$, so our equation reduces to $f(-n-1)=f(1)=f(0)$. This completes the induction.
Since $f(m)=f(0)$ for all integers m, it follows that f must be the constant function $f(x)=c$ for any integer c, which can trivially be seen to work.
4. Jessica rolls a fair die until she gets three 6 s in a row, at which point she stops. What is the expected number of times that Jessica will roll the die?

SOLUTION. Let E be the expected number of rolls before getting three 6 s. For each of Jessica's rolls, observe that exactly one of four mutually exclusive events will occur:
a) The first roll is not a 6 , in which case Jessica has to start the process over and add the first roll to her total. This happens with probability $\frac{5}{6}$. Hence this event adds a value of $\frac{5}{6}(E+1)$ to the expected value.
b) The first roll is a 6 but the second is not, in which case Jessica has to start the process over and add the first two rolls to her total. Since this occurs with probability $\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)$, we thus add $\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)(E+2)$ to our expected value.
c) The first and second rolls are 6 s , but the third is not, in which case Jessica has to start the process over and add the first three rolls to her total. This occurs with probability $\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)$, adding $\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)(E+3)$ to our expected value.
d) The first three rolls are 6 s , occurring with probability $\left(\frac{1}{6}\right)^{3}$, in which case Jessica stops right away, contributing $\left(\frac{1}{6}\right)^{3} 3$ to our expected value.
Putting everything together, we thus find that

$$
E=\frac{5}{6}(E+1)+\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)(E+2)+\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)(E+3)+\left(\frac{1}{6}\right)^{3} 3=\frac{215 E}{216}+\frac{43}{36} .
$$

Solving for E yields

$$
E=\left(1-\frac{215}{216}\right) \frac{43}{36}=258 .
$$

5. Evan Corporation LLC has 956 employees, 24 departments, and a total budget of $\$ 215100$. If V. Enhance, the company's CEO, sends m employees and n dollars to a certain department, then that department will generate a total revenue of $100 \sqrt{m n}$ dollars annually. What is the maximum possible total revenue that Evan Corporation LLC can generate annually? Note that Mr. Enhance does not count as an employee.

SOLUTION. For some $i \in\{1,2, \cdots, 24\}$, suppose that Mr. Enhance allocates m_{i} employees and n_{i} dollars to department i, so that $m_{1}+m_{2}+\cdots+m_{24}=956$ and $n_{1}+n_{2}+\cdots+n_{24}=215100$. Then department i generates $100 \sqrt{m_{i} n_{i}}$ dollars. Summing across all 24 departments, the total revenue R is given by

$$
R=100\left(\sqrt{m_{1} n_{1}}+\sqrt{m_{2} n_{2}}+\cdots+\sqrt{m_{24} n_{24}}\right)
$$

By the Cauchy-Schwarz Inequality, we have that

$$
\begin{aligned}
& \left(\sqrt{m_{1} n_{1}}+\sqrt{m_{2} n_{2}}+\cdots+{\sqrt{m_{24} n_{24}}}^{2}\right. \\
\leq & \left({\sqrt{m_{1}}}^{2}+{\sqrt{m_{2}}}^{2}+\cdots+{\sqrt{m_{24}}}^{2}\right)\left({\sqrt{n_{1}}}^{2}+{\sqrt{n_{2}}}^{2}+\cdots+{\sqrt{n_{24}}}^{2}\right) \\
= & \left(m_{1}+m_{2}+\cdots+m_{24}\right)\left(n_{1}+n_{2}+\cdots+n_{24}\right) \\
= & 956 \cdot 215100
\end{aligned}
$$

Since $956=4 \cdot 239$ and $215100=900 \cdot 239$, it follows that
$\sqrt{m_{1} n_{1}}+\sqrt{m_{2} n_{2}}+\cdots+\sqrt{m_{24} n_{24}} \leq \sqrt{956 \cdot 215100}=\sqrt{(4 \cdot 239)(900 \cdot 239)}=60 \cdot 239$, so that

$$
R=100\left(\sqrt{m_{1} n_{1}}+\sqrt{m_{2} n_{2}}+\cdots+\sqrt{m_{24} n_{24}}\right) \leq 100 \cdot 60 \cdot 239=1434000
$$

Due to the Cauchy-Schwarz Inequality, equality is achieved above iff $\frac{\sqrt{m_{i}}}{\sqrt{n_{i}}}$ and thus $\frac{m_{i}}{n_{i}}$ is constant for all i. Thus the maximum possible revenue generated is $\$ 1434000$.
6. A gambler starts with an initial amount of $\$ 3$ and makes a series of bets. The gambler earns $\$ 1$ upon winning a bet and loses $\$ 1$ otherwise. The gambler stops betting when he either reaches a total amount of $\$ 6$ or completely runs out of money. Letting p be the probability of the gambler losing an arbitrary individual bet, independent of all other bets, compute, with proof, the probability that gambler eventually goes broke.

SOLUTION. As the gambler makes a series of bets, his current amount of money moves by 1 up or down among the integers between 0 and 6 , inclusive. Once the current amount reaches either 0 or 6 , the series ends.
Now, for any $0 \leq i \leq 6$, let x_{i} be the probability that the series ends at 0 if the initial amount is i and $q=1-p$ be the probability that the gambler wins a bet. If the gambler currently has i dollars for some $1 \leq i \leq 5$, then the probability x_{i} that the series of bets eventually ends at $\$ 0$ equals the sum of the probabilities of the following two events:
a) The gambler's next bet is a loss, occurring with probability p, times the probability that the series starting at $i-1$ ends at 0 , with probability x_{i-1}, or
b) The next bet is a win, occurring with probability q, times the probability that the series starting at $x+1$ ends at 0 , with probability x_{i+1}.
It thus follows that

$$
x_{i}=p x_{i-1}+q x_{i+1}
$$

Since $x_{0}=1$ and $x_{6}=0$, we apply the above equation to get the following system of 5 linear equations:

$$
\begin{aligned}
& x_{1}=p+q x_{2}, \\
& x_{2}=p x_{1}+q x_{3}, \\
& x_{3}=p x_{2}+q x_{4}, \\
& x_{4}=p x_{3}+q x_{5}, \\
& x_{5}=p x_{4} .
\end{aligned}
$$

It suffices to find x_{3}, so we substitute the value of x_{1} from the first equation into the second one and also substitute the value of x_{2} from the second equation into the third one. Similarly, we substitute the value of x_{5} from the fifth equation into the fourth one and the value of x_{4} from the fourth equation into the third one. One can check that the final result is

$$
x_{3}=\frac{p^{3}}{1-3 p q}=\frac{p^{3}}{3 p^{2}-3 p+1}
$$

7. A sequence of real numbers a_{n} satisfies $\min \left(a_{m}, a_{n}\right)=a_{\operatorname{gcd}(m, n)}$ for all positive integers m, n. Must we have $a_{1}+\cdots+a_{26} \leq a_{2023}+\cdots+a_{2048}$?

SOLUTION. For a fixed real number k, consider the smallest n_{k} such that $a_{n_{k}} \geq k$. If $a_{m} \geq k$, then $a_{m} \geq a_{n_{k}}$, for otherwise $a_{m}=\min \left(a_{m}, a_{n_{k}}\right)=a_{\operatorname{gcd}\left(m, n_{k}\right)}$, which is less than k because $\operatorname{gcd}\left(m, n_{k}\right) \leq n_{k}$ by definition of n_{k}, a contradiction. Thus

$$
\begin{aligned}
a_{m} \geq k & \Leftrightarrow a_{n_{k}}=\min \left(a_{m}, a_{n_{k}}\right)=a_{\operatorname{gcd}\left(m, n_{k}\right)} \\
& \Leftrightarrow \operatorname{gcd}\left(m, n_{k}\right) \geq n_{k} \\
& \Leftrightarrow \operatorname{gcd}\left(m, n_{k}\right)=n_{k} \\
& \Leftrightarrow n_{k} \mid m
\end{aligned}
$$

Now note that there are at most as many numbers in $\left\{a_{1}, \ldots, a_{26}\right\}$ that are at least k as there are numbers in $\left\{a_{2023}, \ldots, a_{2048}\right\}$ at least k, for the number of multiples of n_{k} in the former set is $\left\lfloor\frac{11}{n_{k}}\right\rfloor$, which is the minimum possible number of these multiplies in the latter.
Hence, due to the above results, if one sorts the numbers in the sum $a_{2023}+\cdots+a_{2048}$ in decreasing order, the j th term in the sorted sequence will always be at least the j th term in $a_{1}+\cdots+a_{26}$. Therefore the inequality $a_{1}+\cdots+a_{26} \leq a_{2023}+\cdots+a_{2048}$ must always hold.

