
Berkeley Math Circle: Monthly Contest 2 Solutions

1. A rectangle R has perimeter is 2
√

2018 and the diagonal has length
√

2017. What
is its area?

Solution. Let a and b be the side lengths, so

a+ b =
√

2018

a2 + b2 = 2017

the last by the Pythagorean Theorem. Squaring the first relation gives (a + b)2 =
a2 + b2 + 2ab = 2018, hence 2ab = 1, and the area of the rectangle is ab = 1

2 .

2. For odd positive integers a, b, c prove that

a4 + b4 + 2017 6= c4.

Solution. Note that the last digit of n4, where n is an odd positive integer, is always
either 1 or 5. But 1 + 1 + 7 ends with 9, 1 + 5 + 7 ends with 3 and 5 + 5 + 7 ends
with 7. So the last digits of a4 + b4 + 2017 and c4 must be different, which implies
they are not equal.

3. In quadrilateral ABCD we have AB = 7, BC = 24, CD = 15, DA = 20, and
AC = 25. What is the length of BD?

Solution. Observing 72 +242 = 152 +202 = 252, we conclude that triangle ABC and
ADC are right. So in particular quadrilateral ABCD can be inscribed in a circle
with diameter AC. Then by Ptolemy’s Theorem we get

BD =
7 · 15 + 20 · 24

25
=

580

25
=

116

5
.

4. A country has 50 states. How many ways are there to join some pairs of them by
two-way flights such that every state has an odd number of flights departing it?

Solution. The answer is 2(492 ). Rather than 50 states, we will consider the nation as
having 49 states and a 50th capital. The claim is that we can actually join 49 of the
states in any way we wish, and there will be a unique way to join the capital to the
remaining 49 states.

Suppose we’ve joined the first 49 states S1, . . . , S49. Some of these states have an
odd number of flights, and we call these odd states, The others have an even number
of flights, and we call these even states.

In light of this there really is at most one way to join the final capital C: namely,
we must link C to all the even states, but none of the odd states. However C itself
needs to have an odd number of flights departing it — so what we have to show is
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that the number of even states is odd. Since 49 is odd, this is the same as checking
the number of odd states is even.

This is actually a classical problem sometimes called the “handshake lemma”. Call
the degree of a state the number of flights serving it (not including the one from the
capital if it exists). By double-counting, the sum of the degrees is exactly twice the
number of flights (since each flight increase the degree of exactly two states by 1).
So the sum of the degrees is even, which means the number of odd degrees is even,
as desired.

5. Determine whether there exist polynomials A(x), B(x), P (y), Q(y) with real coeffi-
cients satisfying

x+ y + (xy)2017 = A(x)P (y) +B(x)Q(y).

Solution. The answer is no. Suppose we actually select y ∈ {−1, 0, 1}; we then get
the equations

1 + x+ x2017 = λ1A(x) + µ1B(x)

x = λ2A(x) + µ2B(x)

−1 = λ3A(x) + µ3B(x)

for six real numbers λ1, λ2, λ3.

We claim this is impossible. The last two equations can be solved to give

(µ3λ2 − µ2λ3)A(x) = µ3x+ µ2

(µ2λ3 − µ3λ2)B(x) = λ3x+ λ2

which implies in particular that degA,degB ≤ 1. So the first equation is certainly
not possible.

6. Solve the equation a2 + b2 + c2 = (ab)2 over the integers.

Solution. The answer is (0, 0, 0) which is seen to work.

Henceforth assume a, b, c ≥ 0, since we may replace a with −a. The given can be
rewritten as

c2 + 1 = (a2 − 1)(b2 − 1).

If min(a, b) ≤ 1 we easily see only solution is (a, b) = (0, 0). Hence in the sequel
assume a, b ≥ 2.

First note that we cannot have a or b odd, since c2+1 is never divisible by 4. So a and
b are even and both sides are odd integers. But now the right-hand side is the product
of two 3 (mod 4) factors. On the other hand, by Fermat’s Christmas theorem, we
know that c2 + 1 only has 1 (mod 4) prime factors. This is a contradiction.

7. Let A1A2A3A4A5A6A7A8 be a cyclic octagon. Let Bi by the intersection of AiAi+1

and Ai+3Ai+4 (where indices are taken modulo 8). Prove that B1, B2, . . . , B8 lie on
a conic.
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Solution. Consider the hexagon

B2B5B8B3B6B1.

The sides B2B5, B5B8, B8B3, B3B6, B6B1 coincide with the lines A5A6, A8A1,
A3A4, A6A7, A1A2, respectively, by definition. Consequently,

• B2B5 ∩B3B6 = A5A6 ∩A6A7 = A6.

• B5B8 ∩B6B1 = A8A1 ∩A1A2 = A1.

• B8B3 ∩B1B2 = A3A4 ∩B1B2.

But by Pascal’s Theorem on the hexagon A0A2 . . . A6, the three points B1, B2,
A1A6 ∩A3A4 are collinear. Equivalently, A3A4 ∩B1B2 lies on line A1A6.

Thus by the converse of Pascal’s Theorem on B1B6B3B8B5B2 this implies that
the six points Bi (i 6= 4, 7) lie on a conic. A suitable cyclic permutation of indices,
combined with the fact that five points determine a unique conic, solves the problem.
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