Instructions

- This contest consists of seven problems of varying difficulty. Problems 1–4 comprise the Beginner Contest (for grades 8 and below) and Problems 3–7 comprise the Advanced Contest (for grades 9–12). Contest 3 is due on December 4, 2019.

- Begin each submission with your name, grade, school, BMC level, the problem number, and the contest number on every sheet. An example header:

 BMC Monthly Contest 3, Problem 2
 Evan O’Dorney
 Grade 3, BMC Beginner
 from Springfield Middle School, Springfield

Submit different problems on different pages as they are graded separately.

- Each problem is worth seven points; to receive full points all results must be completely proven. Include all relevant explanations in words and all intermediate calculations; answers without justification will receive little or no credit. Submit solutions to as many problems as you can since partial credit will be awarded for sufficient progress.

- Remember you are not allowed to talk to anyone else about the problems, but you may consult any book you wish. See the BMC website at http://mathcircle.berkeley.edu for the full rules.

Enjoy solving these problems and good luck!

Problems for Contest 3

1. Determine whether there exist three positive integers a, b, c such that $a + b$, $b + c$, and $c + a$ are all pairwise distinct prime numbers.

2. Given integers $m \geq n \geq 1$, we define $F_{m,n}$ as the set of all points (x, y) such that $0 \leq x \leq m$, $0 \leq y \leq n$, and $2x$, $2y$, and $x + y$ are all integers. For example, $F_{5,4}$ consists of 50 points and resembles the arrangement of stars on the American flag:

 ![Diagram](https://example.com/diagram.png)

 (a) Find the number of points in $F_{m,n}$ in terms of m and n.
(b) Find all pairs \((m, n)\) such that \(F_{m,n}\) has exactly 5000 points.

3. Let \(APBCD\) be a convex pentagon for which \(ABCD\) is a square. Diagonals \(PD\) and \(AB\) meet at \(Q\), while diagonals \(PC\) and \(AB\) meet at \(R\). Prove that the sum of the areas of triangles \(PAQ\) and \(PBR\) equals the area of triangle \(DQR\).

4. If you label your thumbs with the number 1, index fingers with the number 2, and so on up to 5 on your little fingers, then when you put your hands together with each finger touching the corresponding finger on the you earn a score of

\[
1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 + 4 \cdot 4 + 5 \cdot 5 = 55
\]

which is the highest score you can get. If you turn your hands so that one thumb is on the other index finger, and so on, you’d have \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + 4 \cdot 5 + 5 \cdot 1 = 45\).

(a) By turning your hands in this way, what is the smallest score you can get?

(b) If aliens with 12 fingers on each hand play this game, what is their highest and lowest possible score across the 12 possible turns?

(c) If aliens with \(n\) fingers on each hand play this game, what is their highest and lowest possible score across the \(n\) possible turns?

5. Suppose \(f\) is a function such that \(f(xy + 1) = xf(y) - f(x) + 6\) for all real numbers \(x\) and \(y\). Find all possible functions \(f\) that satisfy this equation and prove that no other functional solutions exist.

6. Let \(ABC\) be a nondegenerate triangle. Let \(A_1, B_1, C_1\) be any points on lines \(BC, CA, AB\), respectively. Let \(A_2, B_2, C_2\) denote the midpoint of \(AA_1, BB_1, CC_1\), respectively.

Prove that the points \(A_2, B_2\) and \(C_2\) are collinear if and only if one or more of \(A_1, B_1\) and \(C_1\) coincides with a vertex of the triangle \(ABC\).

7. Show that there are infinitely many pairs of integers \((x, y)\) satisfying

\[
x^2 + y^2 + 2017 = 2019xy.
\]