
Statistics + Physics

Kyle Devereaux, BMC March 13, 2024

0.1 Intro to some basic physics

In most intro physics classes in high school and college, one learns about fundamental laws
applied to systems with not that many particles. Classic examples are using Newton’s second
law to solve for a ball rolling down an incline, using Schrodinger’s equation to solve for the
position of a quantum particle in a box, and using Maxwell’s equation to solve how a charge
behaves in an electric field.

An underlying theme however is that in these classes, you only work with scenarios with
only a few particles - usually just one or two. They are useful examples, but usually we have
more to worry about in the real world. Most objects familiar to us in daily life, have on the
order of ∼ 1023 atoms (Avogadro’s number). A cup of water has ≈ 8 × 1024 molecules and
≈ 2 × 1025 atoms. So what if someone asks you why water freezes at 32F? We don’t even
know what temperature is.

It’s not that we are missing more fundamental laws - classical, quantum, and EM physics
are sufficient to solve for such information - but it is very hard to do. Classical mechanics
tells us that knowing the position xi and velocity vi of every particle in a system to predict
its future dynamics exactly. We just need to solve F = ma for every atom in the water to
see when they freeze:

Fi(x1,x2,x3, . . . ,x1023) = m · ai = m
d2xi
dt2

But then we have a system of ∼ 1023 coupled differential equations! No computer could
solve it exactly. We need a whole different approach.

0.2 Ideas from statistics

Common properties of materials you know, like pressure, viscosity, temperature, are all just
averages of the properties of its constituents. If you think of a bottle of water, the most
basic description each of the particles has some position xi and some velocity vi, pressure on
the bottle is just the average of all the tiny forces each atom of water exerts on the plastic
when it collides with the surface. Same with density, which is just the average number of
particles per unit volume

ρ =
⟨N⟩
δr3

Here we use ⟨N⟩ to denote the average. These global properties we call ”macroscopic” to
distinguish them from the ”microscopic” properties of the constituents.
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0.3 Microstates and macrostates

The microstate is all the information of the microscopic state of the system, in other words,
the set of position and velocity (xi, vi) for each for the N = 1023 particles.

The macrostate is some total coarse-grained property. i.e. the denisty, number or parti-
cles, energy.

Let X be the set of all possible microstate of the system, then if x ∈ X is one particu-
lar microstate, then for some macrostate M , is usually the case that M is a function of
x

M =M(x)

Our end goal: find relations between different macrostates (without having any microstate
buisness). We want to derive famous relations like the ideal gas law PV = NRT , note that
this is a relation between four macrostates and one constant of nature.

0.4 Microcanonical ensemble

Energy E is an especially important macrostate of ”closed” systems - closed meaning the
energy of the system doesn’t change over time. You can imagine a bunch of particles in a
box colliding, with no energy transfer in/out of the box, the total energy E is constant in
time, and the microstates of the system are not funtions of time x = x(t). The fundamental
statement of the microcanonical ensemble is the probabilities of microstates are given by

P (x) =

{
1

g(E)
H(x) = E

0 H(x) ̸= E

Where g(E) is the total number of microstates with energy E and H(x) is the energy of the
microstate x. The second case just stays that all microstates of the system, to have non-zero
probability, intuitively have to have the same energy as the system. The proof for this is
ergodic theory and is a topic for graduate classes.
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Example spin

Suppose N particles can have one
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Taking v77 we used Stirling
approximation again
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g E N exp N α Ind lnα
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what is the most probableenergy
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