Berkeley Math Circle

Counting trees

1. A group of n servers needs to be connected into a network using $n-1$ cables so that each server could communicate with every other. For example, for three servers A, B, C, this can be done in three different ways:

In how many ways can this be done with

(a) 4;
(b) 5 servers?

Recall that we defined \boldsymbol{a} tree as a connected graph without cycles. Thus, Problem 1 asks to find the number of different trees with (a) 4; (b) 5 given vertices.

Last time we proved Tree Theorem stating that a tree with n vertices has exactly $n-1$ edges.
2. Show that a tourist wishing to visit all 100 cities in Effiland (where, as you remember, the network of flights is a tree) can do this using no more than:
(a) 198 flights;
(b) 196 flights.

There are several different ways to characterize trees.
Let T be a graph with n vertices (nodes)). The following statements are equivalent:
(a) T is a tree.
(b) For any two vertices in T, there is a unique path from one to the other along edges of T.
(c) T is connected and has $n-1$ edges.
(d) T has no cycles and has $n-1$ edges.
(e) T is connected, but deleting any edge makes it disconnected (i.e. T is minimally connected).
(f) T has no cycles, but addition of any new edge creates a cycle (i.e. T is maximally acyclic).
3. Verify that the statements (a)-(f) above are indeed equivalent.
4. Find all different types of trees (i.e. trees with unlabeled vertices) with (a) 6; (b) 7 vertices.
5. Find the number of trees with (a) 6; (b) 7 labeled vertices (i.e. do Problem 1 for $n=6,7$).

