Billiards and Checkers I

BMC Advanced

March 13, 2024

1 Billiards

Let n, m be two coprime positive integers. Suppose a ball is launched from the bottom left corner of a $m \times n$ box at a 45° angle and continually bounces on the sides until it reaches another corner, like below.

Exercise 1.1. Draw out the picture for some other pairs of (m, n) = (3, 4), (2, 7), (2, 9), (6, 7).

Exercise 1.2. If we label the bottom left as (0,0), which points are hit by the ball?

Definition 1.3. We label the bounces on the bottom with a positive sign if it goes left to right and a negative sign if it goes right to left. The pool sign $(m|n) = \pm 1$ is the product of the signs.

Exercise 1.4. Calculate the pool signs of the different pairs of (m, n).

Exercise 1.5. What is a pattern for (n-1|n)?

Exercise 1.6. What is a pattern (2|n)?

Exercise 1.7. Calculate (m|n) for the following pairs: (m, n) = (3, 8), (5, 8), (7, 8), (9, 8), (3, 10), (7, 10), (9, 10). Do you notice any pattern in the path the billards ball takes?

Exercise 1.8. Determine a pattern for (m|2n) where m is odd and 2n is even.

2 Reciprocity

We want to determine if there is a relation between (m|n) and (n|m).

Exercise 2.1. How can we view (n|m) and (m|n) on the same board?

Exercise 2.2. Suppose that m, n are odd with m < n. For 0 < 2k < m, show that the bounce at (0, 2k) and (n - m + 2k, 0) have the same sign.

Exercise 2.3. Show that if n, m are both odd, then $(n|m) \cdot (m|n) = (m|n-m)$.

Exercise 2.4. Prove a reciprocity that $(n|m)(m|n) = (-1)^{(m-1)(n-1)/4}$.