Billiards and Checkers I

BMC Advanced
March 13, 2024

1 Billiards

Let n, m be two coprime positive integers. Suppose a ball is launched from the bottom left corner of a $m \times n$ box at a 45° angle and continually bounces on the sides until it reaches another corner, like below.

Exercise 1.1. Draw out the picture for some other pairs of $(m, n)=(3,4),(2,7),(2,9),(6,7)$.

Exercise 1.2. If we label the bottom left as $(0,0)$, which points are hit by the ball?
Definition 1.3. We label the bounces on the bottom with a positive sign if it goes left to right and a negative sign if it goes right to left. The pool sign $(m \mid n)= \pm 1$ is the product of the signs.

Exercise 1.4. Calculate the pool signs of the different pairs of (m, n).
Exercise 1.5. What is a pattern for $(n-1 \mid n)$?
Exercise 1.6. What is a pattern $(2 \mid n)$?
Exercise 1.7. Calculate $(m \mid n)$ for the following pairs: $(m, n)=(3,8),(5,8),(7,8),(9,8),(3,10)$, $(7,10),(9,10)$. Do you notice any pattern in the path the billards ball takes?

Exercise 1.8. Determine a pattern for $(m \mid 2 n)$ where m is odd and $2 n$ is even.

2 Reciprocity

We want to determine if there is a relation between $(m \mid n)$ and $(n \mid m)$.
Exercise 2.1. How can we view $(n \mid m)$ and $(m \mid n)$ on the same board?
Exercise 2.2. Suppose that m, n are odd with $m<n$. For $0<2 k<m$, show that the bounce at $(0,2 k)$ and $(n-m+2 k, 0)$ have the same sign.

Exercise 2.3. Show that if n, m are both odd, then $(n \mid m) \cdot(m \mid n)=(m \mid n-m)$.
Exercise 2.4. Prove a reciprocity that $(n \mid m)(m \mid n)=(-1)^{(m-1)(n-1) / 4}$.

