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DISCLAIMER: 

We’re going to talk in an incredibly simplified way to (hopefully) develop some 
intuition.



Part I: Bayesian 
Statistics

(sort of)

Pierre-Simon Laplace
1749 – 1827



Motivation

● Chance of Rain: P(rain)
● P(rain) vs P(rain | grass wet)
● How does the knowledge of the grass 

being wet affect belief of other nodes?
● We want a way to update our prior 

model for P(rain) to incorporate the 
new data that it’s wet outside to get a 
new posterior model P(rain | grass 
wet)



First: 
The Quick Introduction to Probability

● Events
○ A random variable assumes any of several different 

numeric values as a result of some random event.
○ Can be discrete or continuous

● A probability model is the collection of all possible outcomes 
(the sample space) and their corresponding probabilities.

● (Simplified) Probability Axioms
1.
2.
3.

x

P(X = x)



Theoretical Probability

● If outcomes are equally likely, 

1. Rolling 20-sided die
a. P(2)
b. P(even)
c. P(1 or 2)
d. P(21)
e. P(odd)

2. Tossing two coins
a. P(no Heads)
b. P(at least one H)
c. P(one H, one T)
d. P(1st is H)
e. P(TT)



Antigen Covid Tests ~2020
Find:

1. P(antigen positive)
2. P(antigen negative)
3. P(antigen negative AND PCR positive)

Total no. of 
persons (column 

%)

No. of persons (row %)§

Antigen-p
ositive

Real-time 
RT-PCR–positi

ve

Real-time 
RT-PCR–positive, 
antigen-negative

Real-time 
RT-PCR–negative, 
antigen-positive

3,419 (100) 161 (4.7) 299 (8.7) 142 (4.2) 4 (0.1)

https://www.cdc.gov/mmwr/volumes/70/wr/mm7003e3.htm#T1_down



Conditional Probability

● Find
1. P(PCR +)
2. P(PCR + | ag +)
3. P(PCR + | ag + , Symptomatic)
4. P(PCR + | ag + , Asymptomatic)

● What do you notice?

https://www.cdc.gov/mmwr/volumes/70/wr/mm7003e3.htm#T2_down



Bayes’ Theorem

● Let’s prove it!

● We write: 



Bayes’ Theorem – Names for the Different Parts

Posterior PriorLikelihood

● Q1: What would be the effect of a “flat” prior?
○ MLE (maximum likelihood estimate) vs MAP (maximum a posteriori)

● Q2: What about a prior with point mass?



Coin Flipping Experiments

● Let’s consider coin flipping. Can we determine if a coin is fair?
● What is the probability model for a single coin flip?

○ Bernoulli
● What is the model for the likelihood: N flips with x heads?

○ Binomial
● So… What could work for a prior?



Conjugate Prior to Binomial: Beta Distribution

● A conjugate prior for a likelihood produces a posterior from the same family.
● The conjugate prior for the Binomial(N,X) or Bernoulli(theta) is the Beta 

distribution.

● The Beta(a,b) distribution 

● Specify the posterior for Bernoulli!



Back to Coin Flipping

● Let’s pick a prior and flip a coin one time.
● And again
● And again.
● Let’s add on 20 more flips!
● What happens?
● What do you notice about the more flips?



Classifying Spam: A 
Naive Bayes Classifier

● Emails are Spam or Not Spam
●  i-th word of a given document 

occurs in spam: 
○ Assume independent

●
● What could we use for P(S)?
● What is P(S | D)?
● Classify Spam: P(S | D) and P(not 

S | D)



Part II: Computer Vision



What Do You See?

https://www.cs.jhu.edu/~ayuille/JHUcourses/VisionAsBayesianInference2023/1/Lecture1.pdf



Representing Images

● Images are complex and ambiguous
● Single 1024x1024 image 0-255 photons

○ # Possible images = (1024x1024)^256
● But: # Naturally occurring images is much much less

○ There are regularities in images and the world
● Given Image I, State of the World W
● Discriminative models: P(W | I)
● Generative models: P(I | W) P(W)
● Probability Distribution defined on a structured 

representation
○ Use prior and likelihood
○ Large question: how do you compute?

Olshausen, Field. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1 ? 1997



Image Denoising

● Place a prior distribution over 
clean images

○ Represents our beliefs about 
what clean images look like.

● Likelihood
○ P(Noisy | Clean) ~ Normal
○ Assumption: noise is additive 

Gaussian noise
● Use Bayesian inference to 

estimate the posterior distribution 
over clean images given the 
observed noisy image and the 
prior distribution.

SIDD (Smartphone Image Denoising Dataset)



Cognitive scientists: Bayesian 
statistics models human thought 

● Learning names for categories can be 
modeled with Bayesian inference

● Assume a hierarchical tree structure
● Priors are placed on branch length
● Likelihoods favor lower branches
● Posterior probabilities favor generalizing 

across the lowest branch that spans all 
observed examples (grey)

How to Grow a Mind: Statistics, Structure, and Abstraction
Joshua B. Tenenbaum, et al. 2011



Learning Concepts from Images

● Prior
○ Structural 

configuration 
and 

○ Complexity
● Likelihood on 

features
● Unsupervised 

learning of 
hierarchical 
reconfigurable 
image 
templates

Zhangzhang Si and Song-Chun Zhu. Learning AND-OR Templates for ObjectRecognition and Detection. 



Object Segmentation/Recognition: 
Microsoft’s COCO Dataset

https://cocodataset.org/#explore

● The Tasks
○ Segmentation
○ Recognition in context

● What can prior beliefs tell us about the the 
presence and location of objects in the 
image (e.g., object sizes, shapes, and 
typical locations)?

● How can we use Bayesian inference to 
update our beliefs about the presence and 
location of objects based on observed 
image features?



Image Parsing

●  And-or Graph (AoG) visual 
knowledge representation, which 
provides a graphical representation 
serving as prior knowledge for 
representing diverse visual patterns 
and provides top-down hypotheses 
during the image parsing

● Objects that have a high prior 
probability of being on together are 
grouped together with “positive” 
edges, while objects that have low 
prior probability of being on together 
are grouped by negative edges.

Yao, et al. I2T: Image Parsing to Text Description



Pedestrian or not pedestrian 

● If you were creating an 
autonomous vehicle, what type of 
prior would you place on detecting 
pedestrians?

● A Note on Error
○ Type I Error: Detect pedestrian when 

there is none. False Alarm.
○ Type II Error: We fail to detect 

pedestrian when there is actually a 
pedestrian. Big Problem.



Overview of Bayesian Statistics

● The Good
○ Small sample inference is the same as large sample
○ It reduces to MLE
○ It makes use of prior information
○ It is interpretable (we didn’t talk much about the frequentist way, but trust me!).
○ It is convenient for a wide variety of models

● The Challenges
○ Choosing the prior – this is really subjective
○ Computational complexity – this is real!


