Bayesian Statistics

With Applications to Computer Vision

Amy Fire
 BMC Intermediate II Spring 2024

Outline

- Part I: Bayesian Statistics
- Part II: Applications to Computer Vision

DISCLAIMER:

We're going to talk in an incredibly simplified way to (hopefully) develop some intuition.

Part I: Bayesian Statistics

(sort of)

Motivation

- Chance of Rain: P(rain)
- P (rain) vs P (rain | grass wet)
- How does the knowledge of the grass being wet affect belief of other nodes?
- We want a way to update our prior model for P (rain) to incorporate the new data that it's wet outside to get a new posterior model P(rain | grass wet)

CAUSALITY

MODELS, REASONING, AND INFERENCE

JUDEA PEARL

First:
 The Quick Introduction to Probability

- Events
- A random variable assumes any of several different numeric values as a result of some random event.
- Can be discrete or continuous
- A probability model is the collection of all possible outcomes (the sample space) and their corresponding probabilities.

- (Simplified) Probability Axioms

1.

$$
P(A) \geq 0
$$

2.

$$
P(\Omega)=1
$$

\square
3.

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Theoretical Probability

- If outcomes are equally likely,

$$
P(A)=\frac{\# \text { outcomes in } A}{\# \text { possible outcomes }}
$$

1. Rolling 20-sided die a. $P(2)$
b. $P(e v e n)$
c. $\mathrm{P}(1$ or 2$)$
d. $P(21)$
e. $\mathrm{P}($ odd $)$
2. Tossing two coins
a. P (no Heads)
b. $\mathrm{P}($ at least one H$)$
c. P (one H, one T)
d. $\mathrm{P}(1$ st is H$)$
e. $P(T T)$

Antigen Covid Tests ~2020

Find:

1. P (antigen positive)

2. $P($ antigen negative)
3. $P($ antigen negative AND PCR positive)

	No. of persons (row \%)§			

Conditional Probability

$P(A \mid B):=P(A \cap B) / P(B)$

- Find

1. $P(P C R+)$
2. $P(P C R+\mid a g+)$
3. $P(P C R+\mid a g+$, Symptomatic $)$
4. $\mathrm{P}(\mathrm{PCR}+\mid \mathrm{ag}+$, Asymptomatic $)$
Results and Performance Positive Negative Total

BinaxNOW antigen test result			
All participants ($\mathrm{N}=3,419$)			
Positive	157	4	161
Negative	142	3,116	3,258
Total	299	3,120	3,419
Symptomatic (≥ 1 symptom) ($\mathrm{n}=827$)			
Positive	113	0	113
Negative	63	651	714
Total	176	651	827
Asymptomatic ($\mathrm{n}=2,592$)			
Positive	44	4	48
Negative	79	2,465	2,544
Total	123	2,469	2,592

Bayes' Theorem

- Let's prove it!
- We write:

$$
f(y \mid x) \sim f(x \mid y) f(y)
$$

[370]

quodque folum, certa nitri figna præbere, fed plura concurrere debere, ut de vero nitro producto dubium non relinquatur.
LII. An E/fay towards folving a Problem in the Doctrine of Cbances. By the late Rev. $M r$. Bayes, F. R.S. communicated by $M r$. Price, in a Letter to John Canton, A. M. F. R.S.

Dear Sir,
Read Dec. 23, Now fend you an effay which I have ${ }^{1763 .}$ found among the papers of our deceafed friend Mr. Bayes, and which, in my opinion, has great merit, and well deferves to be preferved. Experimental philofophy, you will find, is nearly in-

Bayes' Theorem - Names for the Different Parts

$P(H \mid D) \sim P(D \mid H) * P(H)$

Posterior

- Q1: What would be the effect of a "flat" prior?
- MLE (maximum likelihood estimate) vs MAP (maximum a posteriori)
- Q2: What about a prior with point mass?

Coin Flipping Experiments

- Let's consider coin flipping. Can we determine if a coin is fair?
- What is the probability model for a single coin flip?
- Bernoulli
- What is the model for the likelihood: N flips with x heads?
- Binomial
- So... What could work for a prior?

Conjugate Prior to Binomial: Beta Distribution

- A conjugate prior for a likelihood produces a posterior from the same family.
- The conjugate prior for the Binomial (N, X) or Bernoulli(theta) is the Beta distribution.
- The Beta(a,b) distribution

$$
\begin{aligned}
& \operatorname{Beta}(a, b) \sim c \theta^{\alpha-1}(1-\theta)^{\beta-1} \\
& E(\theta)=\frac{\alpha}{\alpha+\beta}
\end{aligned}
$$

- Specify the posterior for Bernoulli!

Back to Coin Flipping

- Let's pick a prior and flip a coin one time.
- And again
- And again.
- Let's add on 20 more flips!
- What happens?
- What do you notice about the more flips?

Classifying Spam: A Naive Bayes Classifier

- Emails are Spam or Not Spam
- i-th word of a given document occurs in spam: $P\left(w_{i} \mid S\right)$
- Assume independent
- $\quad P(D \mid S)=\prod_{i} P\left(w_{i} \mid S\right)$
- What could we use for $\mathrm{P}(\mathrm{S})$?
- What is $P(S \mid D)$?
- Classify Spam: $P(S \mid D)$ and $P(n o t$ $S \mid D)$

उ Thunderbird thinks this message is junk.

fellow clinicians

being, up until now, a passive observer of this whole "wallet email" slurs, personal and professional insults, and the like I have been hav admit, the last email did somewhat confuse me, having spent a fev mont windsor ontario.
please, if you have the time, allow me to enlighten you all to a few q
(1) he was quoted as saying "ohmygodohgodohnygod, i couldnt...i couldn end table doiley set he had nashed to his face* (he had purchased rece (2) he answers regularly to "nancy"
(3) he spent 30 minutes debating vith the back side of a burnt pot whe with "blueberries, strawberries, a nice fruity mix", or if he should

Part II: Computer Vision

What Do You See?

Representing Images

- Images are complex and ambiguous
- Single 1024×1024 image 0-255 photons
- \# Possible images = $(1024 \times 1024)^{\wedge} 256$
- But: \# Naturally occurring images is much much less
- There are regularities in images and the world
- Given Image I, State of the World W
- Discriminative models: $\mathrm{P}(\mathrm{W} \mid \mathrm{I})$
- Generative models: P(I\|W)P(W)
- Probability Distribution defined on a structured representation
- Use prior and likelihood
- Large question: how do you compute?

Image Denoising

- Place a prior distribution over clean images
- Represents our beliefs about what clean images look like.
- Likelihood
- P(Noisy | Clean) ~ Normal
- Assumption: noise is additive Gaussian noise
- Use Bayesian inference to estimate the posterior distribution over clean images given the observed noisy image and the prior distribution.

(a) Noisy image (ISO 800)

(c) Ground truth using [25]

(b) Low-ISO image (ISO 100)

(d) Our ground truth

Cognitive scientists: Bayesian statistics models human thought

- Assume a hierarchical tree structure
- Priors are placed on branch length
- Likelihoods favor lower branches
- Posterior probabilities favor generalizing across the lowest branch that spans all observed examples (grey)

Learning Concepts from Images

- Prior
- Structural configuration and
- Complexity
- Likelihood on features
- Unsupervised learning of hierarchical reconfigurable image templates

> Part dictionary (terminal nodes)

Object Segmentation/Recognition: Microsoft's COCO Dataset

http://cocodataset.org/\#explore?id=228854
http://farm2.staticflickr.com/1060/991963897_48a7221ca1_z.jpg
a long haired brown dog laying on a couch
a dog lounging on a sofa bear a photo of his family.
a red dog lays sprawled out on a gray couch next to an end table that features a wedding picture and a l_{c} a dog lying down on a couch next to a nightstand with a wedding picture on top.
a brown dog is laying on a gray couch

https://cocodataset.org/\#explore

Image Parsing

- And-or Graph (AoG) visual knowledge representation, which provides a graphical representation serving as prior knowledge for representing diverse visual patterns and provides top-down hypotheses during the image parsing
- Objects that have a high prior probability of being on together are grouped together with "positive" edges, while objects that have low prior probability of being on together are grouped by negative edges.

(b) text description: The picture is a landscape scene with a (male) person, (green) water, (green) trees, (grey) sky, (dust) ground. The man is carrying a backpack, standing on the ground in front of the water....
tov Washington Post
Tesla Autopilot crashes on cross traffic - The Washington Post

A Post analysis reveals that people have died or been gravely injured in crashes where Tesla's software should not have been enabled in the..
Dec 10, 2023

NBC News

Self-driving car runs over pedestrian hit by SF human driver
A hit-and-run driver struck a pedestrian Monday night, tossing her into the path of a Cruise self-driving car that then drove over her,...

Oct 3, 2023

F Futurism
Tesla Driver Says He's Not Sure If He Killed a Pedestrian Because He Was on Autopilot

A Tesla driver, who at first denied having killed a woman with his Tesla in a hit-and-run, s now claiming he must've been using Autopilot.

Feb 12, 2024
evs InsideEVs
Tesla Crashes Into Tesla, Then Crashes Into Another Tesla Also, another Tesla was involved but didn't get mixed up in the crash

Feb 19, 2024
*) Daily Express
Tesla 'on autopilot' mows down pedestrian before crashing outside migrant centre

Medics were at the scene of the accident outside a migrant center after a Tesla ran over

Overview of Bayesian Statistics

- The Good
- Small sample inference is the same as large sample
- It reduces to MLE
- It makes use of prior information
- It is interpretable (we didn't talk much about the frequentist way, but trust me!).
- It is convenient for a wide variety of models
- The Challenges
- Choosing the prior - this is really subjective
- Computational complexity - this is real!

