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1 The Heat Equation

Consider a metal rod bent into a circle, with circumference 2π meters. Call the
point at which the ends of the rod are glued together 0, so that we can identify
the rod with the unit interval [−π, π) glued together at the endpoints. Suppose
the rod starts with a temperature at each point x given by f(x). We would like
to understand the temperature at point x after time t, say as a function u(t, x).

If you were a physicist in the early 1800s, it would have been known to you
that such a function describing the heat of the rod must satisfy{

∂tu = ∂2
xu

u(0, x) = f(x)

at least when you choose your units appropriately. You would also know
that when such a u exists, it is unique, so finding any solution to this differen-
tial equation actually tells you how the heat of the rod evolves over time.

A reasonable hope is that the function u splits as

u(t, x) = v(t)g(x)

for some single-variable equations v and g. In such a situation, one could
observe

∂tu = v′(t)g(x) = v(t)g′′(x) = ∂2
xu

or, in another form,
v′(t)

v(t)
=

g′′(x)

g(x)
.

Since one side is a function only of t, and the other is a function only of x,
one concludes that both sides must be constant. That is, there exists a constant
λ such that {

v′(t) = λv(t)

g′′(x) = λg(x)
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This method, called separation of variables, reduces our partial differen-
tial equation to an ordinary differential equation.

These equations should suggest to you some sort of exponential; in particu-
lar, g′′(x) = λg(x) suggests using g(x) = einx, since this is 2π-periodic when n
is an integer, just like our initial state f(x), and it satisfies g′′(x) = −n2g(x).
(It is a theorem that λ must be negative for any reasonable region whose heat
evolution we want to understand.)

Once we have obtained g(x) = einx, the separation of variables approach
suggests that we should pick vn(t) with v′n(t) = λvn(t), which we can solve for

vn(t) = cne
−n2t for some constant cn. But cn has some influence on the initial

condition; namely u(0, x) = cne
inx. We have thus obtained

u(t, x) = cne
−n2teinx (1)

which satisfies {
∂tu = ∂2

xu

u(0, x) = cne
inx

(2)

What is the physical interpretation of this?

Rewrite ∂tu = ∂2
xu ⇐⇒ (∂t − ∂2

x)u = 0. Since differentiation is linear, so is
∂t − ∂2

x. That is, if u and ũ satisfy (∂t − ∂2
x)u = (∂t − ∂2

x)ũ = 0, then

(∂t − ∂2
x)(a1u+ a2ũ) = a1(∂t − ∂2

x)u+ a2(∂t − ∂2
x)ũ = 0. (3)

Since we already found that u(t, x) = e−n2teinx solves (∂t − ∂2
x)u = 0, we

have ∑
cne

−n2teinx (4)

as a solution to the heat equation with initial condition

u(0, x) =
∑

cne
inx (5)

for any (finite) sum over integers n. It is not hard to argue that this extends to
infinite sums when they converge. Thus, if we have

f(x) =
∑
n∈Z

cne
inx, (6)

then we also have
u(t, x) =

∑
n∈Z

cne
−n2teinx (7)

satisfying the heat equation with initial condition u(0, x) = f(x). When can f
be decomposed in this way?

2



2 Orthonormality

Suppose for a second that we know

f(x) =

∞∑
n=−∞

cne
inx (8)

for appropriate coefficients cn, called its Fourier coefficients. How could we find
the cn?

The key observation is the following:

Theorem 1 (Orthonormality).
∫ π

−π
einxe−imxdx = 0 if m ̸= n and 2π if m = n.

Proof. The proof is easy: just compute!∫ π

−π

einxe−imxdx =

∫ π

−π

ei(n−m)xdx. (9)

If n = m, the integrand is 1, and we have∫ π

−π

1 dx = 2π. (10)

Otherwise, n−m = k is some other integer, and∫ π

−π

eikxdx =
1

k
[eikx]x=π

x=−π =
1

k
(eiπk − e−iπk) = 0 (11)

since eikx is 2π-periodic.

Remark 1. The meaning is that the complex exponentials are orthonormal
with respect to a certain inner product, which is just

(f, g) =
1

2π

∫ π

−π

f(x)g(x)dx. (12)

This is a manifestation of a much more general phenomenon, appearing un-
der the broad umbrella of Pontryagin duality, which unites the discrete Fourier
transform, Fourier series, and the Fourier transform on R. The above argument
works with only the knowledge of the addition formula einxeimx = ei(n+m)x and
2π-periodicity.

In any case, we can now extract the Fourier coefficients of functions if we
are sufficiently confident that they exist.

Exercise 1. Compute the Fourier coefficients of the step function f(x) =
1 if x > 0

0 if x = 0

−1 if x < 0
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One obtains a sequence of functions fN (x) =
∑N

k=−N cke
ikx which converge

(in some sense) to f as N → ∞. We can graph fN for increasing values of N
and appreciate that they get closer and closer to the desired function. However,
one observes Gibbs’ phenomenon: that at the points of discontinuity of f , the
sequence of functions seems to be a much worse approximation than elsewhere.
The image below is not precisely the function described above, but it is illus-
trative.

(Obtained from these lecture notes.)
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