A geometric approach to continued fractions

September 25, 2019

1 Continued fractions ¹

In the following we will use the notation,

$$[b:a_0, a_1, \dots, a_n] = b + \frac{1}{a_0 + \frac{1}{a_1 + \frac{1}{\ddots}}} \cdot \frac{1}{a_{n-1} + \frac{1}{a_n}}$$

Exercise 1. Evaluate [0:1,2,3,4,5].

We denote the convergents of a continued fraction by, for k > 0,

$$[0:a_0,a_1,\ldots,a_k] = \frac{p_k}{q_k}$$

Exercise 2. Show that the convergents satisfy,

 $p_n = a_{n-1}p_{n-1} + p_{n-2}$ and $q_n = a_{n-1}q_{n-1} + q_{n-2}$

for all n > 1, where we assume $p_0 = 0$ and $q_0 = p_1 = q_1 = 1$.

Exercise 3. What is $\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}}$?

Exercise 4. Find the simple continued fractions expansion for 81/35 and 277/101 and use these to find integers m and n for which 81m + 35n = 1 and 277m + 101n = 1.

Exercise 5. Find the continued fraction expansion for $\frac{10!+1}{11!+1}$ and $\frac{3^7-1}{3^8-1}$.

Exercise 6. Evaluate in terms of some square root (not a decimal expression) the number to which converges,

$$[5, 2, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, ...].$$

Exercise 7. Find the continued fraction expansion for the golden ratio $\phi = \frac{1+\sqrt{5}}{2}$, then for $\sqrt{20}$.

 $^{^1\}mathrm{Most}$ of the exercises in this section come from a sheet written by Ted Alper for Standford Math Circle.

2 Plane inversion

There are several good exercises in the handout on plane inversion. Here is a little extra,

Exercise 8. Let A, B, C be three collinear points (in that order) and construct three semicircles $\Gamma_{AC}, \Gamma_{AB}, \omega_0$, on the same side of AC, with diameters AC, AB, BC, respectively. For each positive integer k, let ω_k be the circle tangent to Γ_{AC} and Γ_{AB} as well as ω_{k-1} . Let n be a positive integer. Prove that the distance from the center of ω_n to AC is n times its diameter.

3 Farey tessellation and Ford circles.

Consider an *ideal triangle* T defined in the upper-half plane by the two vertical lines passing through 0 and 1, and the half-circle or diameter $\overline{01}$. We denote by $\iota_{0\infty}, \iota_{1\infty}, \iota_{01}$ the plane inversion the corresponding plane inversions. The Farey tessellation is the *orbit*, or in other words, the images of T by any composition of these three maps. These images are called *tiles* of the tessellation.

Figure 1: Farey Tessellation.

Exercise 9. Show that the images by any composition of the three inversions are not overlapping.

Problem 1 (C. Series' theorem). Let x be a real number represented as a point on the horizontal line, and consider the circle passing through the point i and x. Each time it crosses a triangle, starting with T, it has to go left of right, we denote by w = LLLRRLR... the word describing this sequence if left and right. Factoring the same letters, we write

$$w = L^{a_0} R^{a_1} L^{a_2} \dots,$$

 $show\ that$

$$x = [a_0; a_1, a_2, \dots].$$

Exercise 10. Deduce from this theorem that the Farey tessellation covers the whole upper half-plane, and that the tessellation meets the horizontal line at rational numbers.

We define the *wrong addition* of fractions by the formula

$$\frac{p}{q} \oplus \frac{p'}{q'} = \frac{p+q}{p'+q'}.$$

Exercise 11. Consider a tile of the Farey tessellation which meets the horizontal line at x, y, z (in increasing order), prove that $y = x \oplus z$.

Problem 2 (Farey's theorem). Show that the set of tiles that edges on the horizontal line with a denominator smaller than n,

$$I_n = \{\frac{p}{q} \mid 0 \le p \le q, \ 0 < q \le n\}$$

does not meets the horizontal line in other points. Consider now the elements of I_n order in increasing order u_0, u_1, \ldots, u_m .

Prove that for all n > 0, $u_n = u_{n-1} \oplus u_{n+1}$

The Farey tessellation is closely related to Ford sphere packing.

All the circles have radius $\frac{1}{n^2}$ for all $n \ge 1$.

I will probably not have the time to develop, but you can look them up on the internet. Both of these objects are closely related to hyperbolic geometry.