Board Tiling and Chocolate Sharing with a hint of the Fibonacci sequence - Part III
 By Harry Main-Luu

I. Overarching question

Given a $2 \times n$ bar of chocolate, how many ways can we break it into n pieces of 2×1 (domino style) to share to n friends?

II. Warm-Ups

We will write the Fibonacci sequence in a strange way. We will use powers of a dummy variable x to keep track of the order. That is, each number in the sequence will be attached to a power of x, where the power tells us which term it is, as follow: Instead of writing

$$
1,1,2,3,5, \ldots, \text { we write }
$$

$$
F=1 x^{1}+1 x^{2}+2 x^{3}+3 x^{4}+5 x^{5} \ldots
$$

Then, what does it mean if you see the term $89 x^{11}$ in F ?

III. Technical Preparation

We want to derive a formula for the number in front of the general power x^{n} in the expanded form of F. That number, called the coefficient, will be the nth Fibonacci number.

1. Let $\phi_{1}=\frac{\sqrt{5}-1}{2}, \phi_{2}=\frac{\sqrt{5}+1}{-2}$. Do the following calculations:
a) $\phi_{1}-\phi_{2}$
b) $\phi_{1} \times \phi_{2}$
c) $-\phi_{1}^{2}-\phi_{1}+1$
2. Perform the following calculation

$$
\left(\frac{1}{8-x}-\frac{1}{13-x}\right) \frac{1}{8-13}
$$

3. Prove (or believe)

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{0}}+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\ldots=2
$$

4. Prove (or believe)

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Does it match with the number we found earlier?

IV. Putting facts together

Calculate:
$F-x F-x^{2} F=$

Then, we have $F=\frac{x}{1-x-x^{2}}$.
From here, we perform a lot of mathemagic to get to the final formula:

$$
a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] .
$$

You should check the first few numbers to see if it works!

