Board Tiling, Chocolate Breaking with a Hint of Fibonacci

Part II
By Harry Main-Luu

General Overview

Part 1: Tiling a Plane
Part 2: Tiling a Board
Part 3: Breaking and Sharing Chocolate

Overarching question for today's sessions:

- Given a finite board, is it POSSIBLE to tile it with certain shapes, such as dominoes, triominoes, T-shapes...?
- Next week: We will talk about how many ways we can do it if it's possible!

Some materials from this session are taken from the BMC Book v1, Session 10; National University of Vietnam, HCMC High School for the Gifted contest, and other open sources.

Tiling a Chessboard (8x8 Grid)

Can you tile this board with dominoes?

Tiling a Chessboard (8x8 Grid)

What if we remove one square? Can you still tile this board with dominoes?

Experiment: With your partner, remove two random squares on the 8×8 grid. Can you tile the resulting board?

S							
							s

What if we remove two squares? Can you still tile the board with dominoes?

Experiment: With your partner, remove two random squares on the 8×8 grid. Can you tile the resulting board?

What if we remove two squares?
Can you still tile the board with dominoes?

Experiment: With your partner, remove two random squares on the 8×8 grid. Can you tile the resulting board?

What happens when we place a domino on the chessboard?

Tiling a Chessboard (8x8 Grid)

Can you tile this board with one special square and a lot of the L shape tiles?

Experiment: Put the special square anywhere, then try to tile the rest with the L tiles.

Can you tile this board with one special square and a lot of the L shape tiles?
\square

How do we prove that it is ALWAYS possible to tile the 8×8 grid regardless of where the yellow square is?

Perhaps proof by exhaustion?

It is always possible to tile a 2^{k} 2^{k} board with one special square and many L shape tiles, for any natural k.

How do we show that something is possible for infinitely many options?!

Tiling a chessboard

1. Show that it is POSSIBLE to tile a chessboard with the first four types of tetrominoes.
2. Which ones of these can tile a 6×6 board?

Tiling a 6x6 board with the Square's

Tiling a 6×6 board with the straight's

Tiling a 6×6 board with the straight's

Tiling a 6x6 board with the Z's

Tiling a 6x6 board with the Z's

Tiling a 6×6 board with the T's

Tiling a 6×6 board with the T's

Tiling a 6x6 board with the L's

Preamble for next week (IF we have time):

1. How do we solve a quadratic equation?
2. What is the square root of a number?
3. How do add two fractions? What about adding two fractions with variables instead of numbers?
4. What is the sum:

$$
\sum_{i=0}^{\infty} \frac{1}{2^{i}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots
$$

See you next

 week onFibone Board Tiling, Chocolate Breaking with a Hint of Fibonacci

Part II
By Harry Main-Luu

