Euclidean Algorithm I

BMC Int I Fall 2019

October 23, 2019

1 Divisors

Definition 1.1. For integers $k, n \in \mathbb{Z}$, we say that k is a **factor or divisor** of n if n/k is an integer. In this case, we write $k \mid n$, which is read as "k divides n."

Example 1.2. The positive divisors of 18 are 1, 2, 3, 6, 9, 18.

Exercise 1.3. List all the positive factors of 12 and 20.

Exercise 1.4. What are the divisors of 0?

Definition 1.5. Let $a, b \in Z$ be integers that are both non zero. The greatest common divisor (gcd) of a, b is the largest integer d that is a divisor of both a and b. We write that d = gcd(a, b) or d = (a, b).

Example 1.6. What is the gcd of 12 and 20?

Exercise 1.7. What is (7,7)? What about (n,n) for some $n \ge 1$?

Exercise 1.8. What is (6, 18)? (5, 15)? What about (n, 3n) for some $n \ge 1$?

Exercise 1.9. What is (n,0) for some $n \ge 1$? Why did we say we can't take the gcd of 0 with itself?

2 Division Algorithm

Theorem 2.1 (Division Algorithm). Given two integers $a, b \in \mathbb{Z}$ with b > 0, there exist unique integers $q, r \in \mathbb{Z}$ such that a = bq + r and $0 \le r < b$. We call r the **remainder** when we divide a by b.

Example 2.2. When dividing 236 by 55, we get that $236 = 55 \cdot 4 + 16$ so q = 4 and r = 16. For our purposes, we will really only be interested in the remainder r.

Exercise 2.3. Find the remainder when we divide 254 by 32. Find the remainder when we divide 407 by 74.

Exercise 2.4. Show that if d is a divisor of both a, b, then d is also a divisor of r. Vice versa show that if d divides both b, r, then d is a divisor of a.

Exercise 2.5. Use the previous exercise to prove that (a, b) = (r, b).

3 Euclidean Algorithm

Exercise 3.1. Consider the following calculation:

- $236 = 4 \cdot 55 + 16 \tag{1}$
- $55 = 3 \cdot 16 + 7 \tag{2}$
- $16 = 2 \cdot 7 + 2 \tag{3}$
- $7 = 3 \cdot 2 + 1 \tag{4}$
- $2 = 2 \cdot 1 + 0. \tag{5}$

What is going on and how does it relate to the fact that

$$(236, 55) = (55, 16) = (16, 7) = (7, 2) = (2, 1) = (1, 0) = 1.$$
?

Exercise 3.2. Describe in words how the Euclidean algorithm works. Then use it to find the gcd of (254, 32), (407, 74) and (270, 192).

Exercise 3.3. Use the calculations in Exercise 3.1 to write 16 as a linear combination of 236 and 55 (write $16 = 236 \cdot x + 55 \cdot y$). Then write 7 as a combination of 55 and 16. Use the previous part to substitute 16 to get 7 as a combination of 236 and 55.

Exercise 3.4. Repeat the previous calculations until you write 1 as a linear combination of 236 and 55.

Exercise 3.5. Repeat the same process to write (254, 32) as a linear combination of 254 and 32. Do the same for (407, 74) and (270, 192).

Theorem 3.6 (Bezout's Theorem). For any two integers $a, b \in \mathbb{Z}$ not both zero, there exist integers x, y such that ax + by = g = (a, b).

Exercise 3.7. Are the integers x, y unique? e.g. when we write $236 \cdot (-24) + 55 \cdot (103) = 1$, are there any other choices other than x = -24 and y = 103 that make this true?

Theorem 3.8 (Euclid's Lemma). If $d \mid ab$ and (d, a) = 1, then $d \mid b$.

Example 3.9. We can use Euclid's Lemma to help us quickly determine if a number is divisible by another. We can use this to determine if 2027 is divisible by 17.

Exercise 3.10. Is 7544 divisible by 23? Is 3636 divisible by 13? Is 5410 divisible by 21?

Exercise 3.11. Find a counter example to Euclid's lemma if $(d, a) \neq 1$.

4 Unique Prime Factorization

Definition 4.1. A prime number is a positive number with only two positive divisors: 1 and itself. Any positive number that is not prime is called **composite**.

Exercise 4.2. What are the possible values for (p, n) for some prime p and some integer $n \in \mathbb{Z}$.

Lemma 4.3. If p is a prime number and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Corollary 4.4. If p is a prime number and p divides a product $a_1 \cdots a_k$, then p must divide at least one of the a_i .

Lemma 4.5. Every integer greater than 1 has at least one prime divisor.

Theorem 4.6. There are an infinite number of primes.

Definition 4.7. A twin prime is a pair of primes that differ by 2, so p and p + 2.

Conjecture 4.8 (Twin Prime Conjecture). There are an infinite number of twin primes.

Exercise 4.9. Prove that 5 is the only prime that is part of two twin primes.

Conjecture 4.10 (Goldbach's Conjecture). Every even integer greater than 2 can be written as the sum of two primes.

Theorem 4.11. Every positive integer greater than 1 can be uniquely written as a product of primes.

Exercise 4.12. What is the prime factorization of 63? What about 48?

Exercise 4.13. Prove that any composite number n must have a prime divisor p that satisfies $p \leq \sqrt{n}$.

Problems are adapted from a worksheet on the Euclidean Algorithm by Professor Karen E. Smith of the University of Michigan.