Matrices

Ellen Kulinsky

Aாபsement Рarks

At an amusement park, each adult ticket costs $\$ 10$ and each children's ticket costs $\$ 5$. At the end of one day, the amusement park as sold $\$ 200$ worth of tickets. You also know that in total 30 tickets were sold. How many adult tickets and how many children tickets were sold?

$$
10(30-c)+5 c=200
$$

Money equation:

$$
300-10 c+5 c=200
$$

$10 a+5 c=200$
Num. of tickets equation:

$$
100=5 c
$$

$a+c=30$

$$
c=20
$$

Substitution!
$\mathrm{a}=30-\mathrm{c}$

$$
\mathrm{a}=10
$$

But that wasn't bad... Time to level up.

Get rid of y !
$\left\{\begin{array}{lll}18 x+6 y=96 & 18 x+6 y=96 \\ 5 x+3 y=36 \xrightarrow{x 2} & 10 x+6 y=72\end{array}\right]$

$$
\begin{array}{ll}
\text { Subtract: } \\
8 \mathrm{x}=24 \xrightarrow{\longrightarrow}=3 \xrightarrow{\begin{array}{l}
\text { Plug } \\
\text { back in }
\end{array}} \begin{array}{l}
5 \times 3+3 y=36 \\
15+3 y=36 \\
3 y=21
\end{array}
\end{array}
$$

What abaut חaw?

$$
y=7
$$

Substitution or Elimination... is there another way?

YES! It's called a matrix.

Matrix:

- a rectangular arrangement of numbers into rows and columns
- very useful way to represent information and work with data

$$
A=\left[\begin{array}{rrr}
-2 & 5 & 6 \\
5 & 2 & 7
\end{array}\right] \longleftarrow 2 \text { rows }
$$

Dimensions: m by n matrix (rows by columns) ($m \times n$)

- often used in computers

How does this have to da with systems of equations?

$\begin{aligned} 10 a+5 c & =200 \\ a+c & =30\end{aligned}$	$-\left(\begin{array}{rr:c}10 & 5 & 200 \\ 1 & 1 & 30\end{array}\right)$	Question: Dimensions? Answer: 2 by 3
$18 \mathrm{x}+6 \mathrm{y}=96$	$\left(\begin{array}{ll:l}18 & 6 & 96\end{array}\right)$	Question: How does this relate to original equations?
$5 x+3 y=36$	$\left(\begin{array}{ll:l}5 & 3 & 36\end{array}\right]$	Answer: \# of rows = \# of equations
Question: Why plus 1?	Answer: One column represents no variables	$\begin{aligned} & \text { \# of columns = } 1+\# \text { of } \\ & \text { variables } \end{aligned}$

Your turn!

$$
\begin{aligned}
3 x-2 y & =4 \\
x+5 z & =-3 \\
-4 x-y+3 z & =0
\end{aligned}
$$

$$
\left[\begin{array}{rrrr}
3 & -2 & 0 & 4 \\
1 & 0 & 5 & -3 \\
-4 & -1 & 3 & 0 \\
\uparrow & \uparrow & \uparrow & \uparrow \\
x & y & \mathrm{z} & \text { constants }
\end{array}\right.
$$

Your turn!

$$
\begin{array}{r}
51 x+25 y=101 \\
x+34 y=69 \\
4 x+18 y=40
\end{array} \quad\left[\left(\begin{array}{cc:c}
51 & 25 & 101 \\
1 & 34 & 69 \\
4 & 18 & 40
\end{array}\right)\right.
$$

