Matrices

Ellen Kulinsky

Aாபsement Рarks

At an amusement park, each adult ticket costs $\$ 10$ and each children's ticket costs $\$ 5$. At the end of one day, the amusement park as sold $\$ 200$ worth of tickets. You also know that in total 30 tickets were sold. How many adult tickets and how many children tickets were sold?

$$
10(30-c)+5 c=200
$$

Money equation:

$$
300-10 c+5 c=200
$$

$10 a+5 c=200$
Num. of tickets equation:

$$
100=5 c
$$

$a+c=30$

$$
c=20
$$

Substitution!
$\mathrm{a}=30-\mathrm{c}$

$$
\mathrm{a}=10
$$

But that wasn't bad... Time to level up.

Get rid of y !
$\left\{\begin{array}{lll}18 x+6 y=96 & 18 x+6 y=96 \\ 5 x+3 y=36 \xrightarrow{x 2} & 10 x+6 y=72\end{array}\right]$

$$
\begin{array}{ll}
\text { Subtract: } \\
8 \mathrm{x}=24 \xrightarrow{\longrightarrow}=3 \xrightarrow{\begin{array}{l}
\text { Plug } \\
\text { back in }
\end{array}} \begin{array}{l}
5 \times 3+3 y=36 \\
15+3 y=36 \\
3 y=21
\end{array}
\end{array}
$$

What abaut חaw?

$$
y=7
$$

Substitution or Elimination... is there another way?

YES! It's called a matrix.

Matrix:

- a rectangular arrangement of numbers into rows and columns
- very useful way to represent information and work with data

$$
A=\left[\begin{array}{rrr}
-2 & 5 & 6 \\
5 & 2 & 7
\end{array}\right] \longleftarrow 2 \text { rows }
$$

Dimensions: m by n matrix (rows by columns) ($m \times n$)

- often used in computers

How does this have to da with systems of equations?

$\begin{aligned} 10 a+5 c & =200 \\ a+c & =30\end{aligned}$	$-\left(\begin{array}{rr:c}10 & 5 & 200 \\ 1 & 1 & 30\end{array}\right)$	Question: Dimensions? Answer: 2 by 3
$18 \mathrm{x}+6 \mathrm{y}=96$	$\left(\begin{array}{ll:l}18 & 6 & 96\end{array}\right)$	Question: How does this relate to original equations?
$5 x+3 y=36$	$\left(\begin{array}{ll:l}5 & 3 & 36\end{array}\right]$	Answer: \# of rows = \# of equations
Question: Why plus 1?	Answer: One column represents no variables	$\begin{aligned} & \text { \# of columns = } 1+\# \text { of } \\ & \text { variables } \end{aligned}$

Your turn!

$$
\begin{array}{r}
51 x+25 y=101 \\
x+34 y=69 \\
4 x+18 y=40
\end{array} \quad\left[\left(\begin{array}{cc:c}
51 & 25 & 101 \\
1 & 34 & 69 \\
4 & 18 & 40
\end{array}\right)\right.
$$

Your turn!

$$
\begin{array}{r}
5 x+4 y+13 z=230 \\
x+3 y+5 z=34 \\
7 x+20 z=95
\end{array}
$$

\square

$$
\left.\begin{array}{c}
5 x+4 y+13 z=230 \\
1 x+3 y+5 z=34 \\
7 x+0 y+20 z=95
\end{array}\right]
$$

$$
\left(\begin{array}{ccc:c}
5 & 4 & 13 & 230 \\
1 & 3 & 5 & 34 \\
7 & 0 & 20 & 95
\end{array}\right)
$$

Your turn!

$$
\left.\begin{array}{rl}
5 x-4 y+13 z & =230 \\
-x+3 y+5 z & =34 \\
7 x-20 z & =-95
\end{array}\right]
$$

$$
\begin{gathered}
5 x+(-4) y+13 z=230 \\
(-1) x+3 y+5 z=34 \\
7 x+0 y+(-20) z=-95
\end{gathered} \quad\left[\left(\begin{array}{ccc:c}
5 & -4 & 13 & 230 \\
-1 & 3 & 5 & 34 \\
7 & 0 & -20 & -95
\end{array}\right)\right.
$$

Your turn!

$$
\begin{gathered}
3 x-2 y=4 \\
x+5 z=-3 \\
-4 x-y+3 z=0 \\
{\left[\begin{array}{rrrr}
3 & -2 & 0 & 4 \\
1 & 0 & 5 & -3 \\
-4 & -1 & 3 & 0 \\
\uparrow & \uparrow & \uparrow & \uparrow \\
x & y & z & \text { constants }
\end{array}\right] \stackrel{\leftarrow \text { Eq. } 1}{\leftarrow \text { Eq. } 2} \text {. }}
\end{gathered}
$$

three basic operations that can be performed on a matrix without Row Operations changing the solution set of the linear system it represents

Matrix row operation

Row ロperatians

$$
\begin{aligned}
& 2 x+5 y=3 \\
& 3 x+4 y=6
\end{aligned}
$$

Row Operation	Equations

Reduced Row Echelon Form

A pivot is the first nonzero entry in a row.
In Reduced Row Echelon Form:

- every pivot is a one

$$
\left[\begin{array}{lll}
0 & 2 & 0 \\
0 & 5 & 7 \\
1 & 2 & 9
\end{array}\right]
$$

- all other entries in pivot column, except pivot, are zeros
- every following pivot is strictly further right.
$\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{ccc}
5 & -2 & 1 \\
0 & 3 & -1 \\
2 & 0 & 7
\end{array}\right]
$$

$\left[\begin{array}{llll}0 & 1 & 2 & 7 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{rrrr}
1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

late 18th century (sense 2 of the noun): from French échelon, from échelle 'ladder', from Latin scala.
$\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
-1 & 2 & 0 & 5 \\
0 & 4 & -2 & 6 \\
2 & 4 & 0 & 6
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & -4 \\
0 & 3
\end{array}\right]\left[\begin{array}{rrrr}
1 & -5 & 1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Ргョఁtice!

Steps:

1) Top left: 1.
2) Make second row start with: 0 .
3) Make second entry, second row: 1.
4) All numbers, not pivot in column, turn into Os.
5) Repeat until totally in R.R.E.F.

Yロபг
 ヒบாா!

1) Top left: 1 .
2) Make all entries below: 0 .
3) Make second entry, second row: 1 .
4) All numbers, not pivot in column, turn into Os
5) Repeat until totally in R.R.E.F.

Now let's cambine it all!

To solve a system of equations using a matrix:

$$
\left.\begin{array}{c}
\text { Amusement park: } \\
10 \mathrm{a}+5 \mathrm{c}=200 \\
\mathrm{a}+\mathrm{c}=30
\end{array}\right]\left(\begin{array}{cc:c}
10 & 5 & 200 \\
1 & 1 & 30
\end{array}\right)
$$

1) Rewrite as an "augmented" matrix.
2) Simplify into reduced row echelon form using row operations.

$\left.\left(\begin{array}{rrc}10 & 5 & 200 \\ 1 & 1 & 30\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc}1 & 1 & 30 \\ 10 & 5 & 200\end{array}\right) \xrightarrow{R_{2}+(-10) R_{1}}\left(\begin{array}{ccc}1 & 1 & 30 \\ 0 & -5 & -100\end{array}\right)\right)\left\langle R_{2} /(-5)\right.$

$$
\left(\begin{array}{lll}
1 & 1 & 30 \\
0 & 1 & 20
\end{array}\right) \xrightarrow[R_{1}-R_{2}]{ }\left(\begin{array}{lll}
1 & 0 & 10 \\
0 & 1 & 20
\end{array}\right) \substack{a=10 \text { tickets } \\
c=20 \text { tickets }}
$$

HW:

Reduce into reduced row echelon form:
1)
2)

1	2	0
2	3	4
5	6	7

*3)

HW 1 Salutian:

$$
\begin{array}{||ccc|}
\hline 1 & 2 & 3 \\
0 & -3 & -6 \\
\hline
\end{array}
$$

HW 2 Salution:

1 2 0 2 3 4 5 6 7	add -2 times the 1st row to the 2nd row $\left\lvert\, \begin{array}{ccc}1 & 2 & 0 \\ 0 & -1 & 4 \\ 5 & 6 & 7\end{array}\right.$	$\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & -9\end{array}$	multiply the 3rd row by -1/9 $\left\lvert\, \begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1\end{array}\right.$
$\begin{array}{ccc}1 & 2 & 0 \\ 0 & -1 & 4 \\ 5 & 6 & 7\end{array}$	add -5 times the 1st row to the 3rd row $\left\lvert\, \begin{array}{ccc}1 & 2 & 0 \\ 0 & -1 & 4 \\ 0 & -4 & 7\end{array}\right.$	$\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1\end{array}$	add 4 times the 3rd row to the 2nd row $\left\|\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right\|$
$\begin{array}{\|ccc\|}1 & 2 & 0 \\ 0 & -1 & 4 \\ 0 & -4 & 7\end{array}$	multiply the 2nd row by -11 2 0 0 1 -4 0 -4 7	$\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}$	add -2 times the 2nd row to the 1st row $\left\lvert\, \begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right.$
$\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -4 \\ 0 & -4 & 7\end{array}$	add 4 times the 2nd row to the 3rd row $\left\lvert\, \begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & -9\end{array}\right.$		

HW *ヨ Salution:

2	3	5			
4	6	8	multiply the 1st row by $\left.\mathbf{1 / 2}$	1	$\frac{3}{2}$
:---:	:---:				
	$\frac{5}{2}$				
4	6	\right\rvert\,			

	3	5				
1	$\frac{1}{2}$	$\frac{2}{2}$				
4	6	8	add $\mathbf{- 4}$ times the 1st row to the 2nd row	1	$\frac{3}{2}$	5
:---:	:---:	:---:				
	2	2				
0	0	-2				

	3	5				
1	$\frac{2}{2}$	-2				
0	0	-2	multiply the 2nd row by $\mathbf{- 1 / 2}$	1	$\frac{3}{2}$	5
:---:	:---:	:---:	:---:			
	2	2				
0	0	1				

\(\left.\begin{array}{||ccc||}\hline \& 3 \& 5

1 \& - \& -

0 \& 0 \& 2

0 \& 0 \& 1\end{array}\right]\) add $\mathbf{- 5 / 2}$ times the 2nd row to the 1st row		3	
1	-	0	
	2		
0	0	1	

Review Time

What is a matrix?

- a rectangular arrangement of numbers into rows and columns
- very useful way to represent information and work with data
- often used in computers

3 columns
What are the dimensions of a matrix?

$$
A=\left[\begin{array}{rrr}
-2 & 5 & 6 \\
5 & 2 & 7
\end{array}\right] \longleftarrow 2 \text { rows }
$$

- $\quad m$ by n matrix $(m \times n)$
- rows by columns

Rewrite this system of equations as a coefficient matrix.

$$
\begin{aligned}
& 11 x+5 y=99 \\
& 17 x+14 y=32
\end{aligned}\left[\left(\begin{array}{cc:c}
11 & 5 & 99 \\
17 & 14 & 32
\end{array}\right)\right.
$$

What are the three row operations?

Review Time

What is a pivot?

- first nonzero entry in a row

What is reduced row echelon form?

- every pivot is a one
- all other entries in pivot column,
except pivot, are zeros
- every following pivot is strictly further right

What are the steps to simplifying a matrix into reduced row echelon form?

1) Top left: 1.
2) Make all entries below: 0 .
3) Make second entry, second row: 1.
4) All numbers, not pivot in column, turn into Os.
5) Repeat until totally in R.R.E.F.

How to solve a system of equations using a matrix:

1) Rewrite as an "augmented" matrix.
2) Simplify into reduced row echelon form using row operations.

Reduced Raw Echelon Farm

$\left[\begin{array}{llll}0 & 1 & 2 & 7 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

In Reduced Row Echelon Form:

- every pivot is a one
- all other entries in pivot column, except pivot, are zeros
- every following pivot is strictly further right.
$\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & 2 \\
0 & 4 \\
2 & 4
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
3 & 4 \\
0 & 5 \\
-2 & 6 \\
0 & 6
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -4 & 1 \\
0 & 3 & -1
\end{array}\right]
$$

To solve a system of equations using a matrix:

HW!!!

1) Rewrite as an "augmented" matrix.
$a+2 b+3 c=9$
$2 a-b+c=8$
$3 a-c=3$$\left[\begin{array}{rrr|r}1 & 2 & 3 & 9 \\ 2 & -1 & 1 & 8 \\ 3 & 0 & -1 & 3\end{array}\right]$
2) Simplify into RREF using row operations.
$\left[\begin{array}{rrr|r}1 & 2 & 3 & 9 \\ 0 & -5 & -5 & -10 \\ 0 & -6 & -10 & -24\end{array}\right] \begin{aligned} & (\text { Row 1) } \\ & (\text { Row 2-2•Row 1) } \\ & (\text { Row 3-3•Row 1) }\end{aligned} \quad\left[\begin{array}{rrr|r}1 & 2 & 3 & 9 \\ 0 & 1 & 1 & 2 \\ 0 & -6 & -10 & -24\end{array}\right] \begin{aligned} & \text { (Row 1) } \\ & (-1 / 5 \cdot \operatorname{Row} 2) \\ & (\text { Row 3) }\end{aligned}$
\(\left[\begin{array}{rrr|r}1 \& 2 \& 3 \& 9

0 \& 1 \& 1 \& 2

0 \& 0 \& -4 \& -12\end{array}\right] \quad\)| (Row 1) |
| :--- |
| $($ Row 2) |
| $($ Row 3+6•Row 2) |

$\left[\begin{array}{lll|l}1 & 2 & 3 & 9 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 3\end{array}\right]$
(Row 1)
(Row 2)
(-1/4-Row 3)

Special Matrices

All
 Matrices

Square

பpper
Triangular

Diagonal

Identity

Square

Dimensions: n by n (same number of rows and columns)

$$
\left(\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right)
$$

All Matrices

Special Matrices

Square

பpper
Triangular
All entries below the diagonal are zeros.

$$
\left(\begin{array}{cc}
10 & 20 \\
0 & 40
\end{array}\right)
$$

Question: RREF?

Diaganal
All entries except on the diagonal are zero

$10 \quad 0$
 $0 \quad 40$

Diagonal
 Identitபy
 Lower
 Triangular
 பpper
 Triangular

LaWer Triヨחgபlar

All entries above the diagonal are zeros.

Special Matrices

Identity

All entries are zero, except 1s on the diagonal.

$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Answer:

Square

Upper	Diagonal
Triangular	

Question: Why is the identity special? And why is it called the identity matrix?

If you multiply any matrix by the identity of the appropriate size, you will get back the same (an identical) matrix.

What aperatians ᄃan we da with matrices?

1) Matrix Addition (and Subtraction)
2) Scalar Multiplication (and Division)
3) Matrix Multiplication
4) Transpose
5) Determinant
6) Inverse

Matrix Additian

- Impossible to add matrices of different dimensions
- Matrices are added together by adding the corresponding elements

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
9 & 8 & 7
\end{array}\right]+\left[\begin{array}{lll}
6 & 5 & 4 \\
3 & 4 & 5
\end{array}\right]=
$$

Solve for x and y in the matrix below.

$$
\left[\begin{array}{cc}
-3 & x \\
2 y & 0
\end{array}\right]+\left[\begin{array}{cc}
4 & 6 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 7 \\
-5 & 1
\end{array}\right] \quad \begin{aligned}
& \mathrm{x}=1 \\
& y=-1
\end{aligned}
$$

Matrix Subtractian

Solve for Matrix B.

$$
\left[\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 3 & 6
\end{array}\right]-\left[\begin{array}{ccc}
0 & -4 & 3 \\
9 & -4 & -3
\end{array}\right]
$$

$$
B-\left[\begin{array}{rr}
1 & 6 \\
19 & 3
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
8 & 1
\end{array}\right]
$$

$$
B=\left[\begin{array}{ll}
5 & 8 \\
27 & 4
\end{array}\right]
$$

Scalar multiplicatian

- Multiplying a matrix by a scalar (number) results in every entry scaled by that number

Find 2A (multiply matrix A by the scalar 2).

$$
A=\left[\begin{array}{rr}
10 & 6 \\
4 & 3
\end{array}\right]
$$

$2 A=2 \cdot\left[\begin{array}{rl}10 & 6 \\ 4 & 3\end{array}\right]=\left[\begin{array}{ll}2 \cdot 10 & 2 \cdot 6 \\ 2 \cdot 4 & 2 \cdot 3\end{array}\right]=\left[\begin{array}{rr}20 & 12 \\ 8 & 6\end{array}\right]$

Рractice!

$$
\text { 3) } 3 \times \begin{array}{|ccc|}
2 & 3 & 5 \\
4 & 6 & 8 \\
\hline
\end{array}=\left(\begin{array}{ccc}
6 & 9 & 15 \\
12 & 18 & 24
\end{array}\right)
$$

Matrix Multiplication

Hang on to your seats, this might get a little weird.
$\left(\begin{array}{ll}8 & 5 \\ 6 & 7\end{array}\right) \times\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=$
$\left(\begin{array}{ll}1 & 2 \\ 3 & 5 \\ 6 & 7\end{array}\right)\left(\begin{array}{ll}8+15 & 16+20 \\ 6+21 & 12+28\end{array}\right)=\left(\begin{array}{ll}23 & 36 \\ 27 & 40\end{array}\right)$
You can ask me anything youlwant, ask me anything.

Matrix Multiplicatian iskipifreviewedarreadu

Matrix A: 3 by 4

$$
A \times B=C
$$

Matrix B: 4 by 2

Question: How many rows does result C have?

Question: How many columns does result C have?

Matrix Multiplication

Matrix A: a by b
Matrix B: c by d

Question: How many rows does result C have?

$$
A \times B=C
$$

 $A \times B=C$

 $A \times B=C$}Question: What do we know about the dimensions of A and B ?

Answer: b=c
[The number of columns in A are equal to the number of rows in B]

PrョடLice!!!

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right) \times\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\times\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
2 \cdot 1+3 \cdot 3 & 2 \cdot 2+3 \cdot 4 \\
1 \cdot 1+0 \cdot 3 & 1 \cdot 2+0 \cdot 4
\end{array}\right)=\left(\begin{array}{cc}
11 & 16 \\
1 & 2
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
2 & 2 \\
4 & 1 \\
0 & 6
\end{array}\right) \times\left(\begin{array}{ccc}
1 & -2 & 5 \\
0 & 4 & 3
\end{array}\right)=\left(\begin{array}{ccc}
2 & 4 & 16 \\
4 & -4 & 23 \\
0 & 24 & 18
\end{array}\right)
$$

Review！

What operations can we da with matrices？

All Matrices

Square

Sqபヨாe
Dimensions： n by n
（same number of rows and columns）

Upper Triangular
All entries below the diagonal are zeros．

Lower Triangular
All entries above the diagonal are zeros．

ワiヨロロாヨl

All entries except on the diagonal are zero．

1）Matrix Addition（and Subtraction）
2）Scalar Multiplication（and Division）
3）Matrix Multiplication
4）Transpose
5）Determinant
6）Inverse
 $\left(\begin{array}{ll}8 & 5 \\ 6 & 7\end{array}\right)-\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=\left(\begin{array}{ll}7 & 3 \\ 3 & 3\end{array}\right)$

Identity
All entries are zero，except is on the diagonal．

If you multiply any matrix by the identity of the appropriate size，you will get back the same（an identical）matrix．

HW!!!

$\left(\begin{array}{ll}2 & 2 \\ 4 & 1 \\ 0 & 6\end{array}\right) \times\left(\begin{array}{ccc}1 & -2 & 5 \\ 0 & 4 & 3\end{array}\right)=\left(\begin{array}{ccc}2 & 4 & 16 \\ 4 & -4 & 23 \\ 0 & 24 & 18\end{array}\right)$

Transpase

Transpose: A matrix that is obtained from flipping the original over its diagonal

Hint: Imagine placing a mirror on the diagonal

$$
\left(\begin{array}{lll}
10 & 20 & 30 \\
40 & 50 & 60
\end{array}\right) \xrightarrow{\text { Transpose }}\left(\begin{array}{ll}
10 & 40 \\
20 & 50 \\
30 & 60
\end{array}\right)
$$

What happens if you transpose a matrix transpose?
Driginal Matrix

『гョடLice!!!

ロetermiпョпt

2×2 matrix determinant:

Determinant: A number

 obtained from a square matrix,$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Geometric Interpretation:

- The area of the parallelogram is the absolute value of the determinant of the matrix formed by the vectors representing the
parallelogram's sides.

ロetermiпヨпt（cロாt．）

Example：
2×2 matrix determinant：
$A\left|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c\right.$.$\quad\left(\begin{array}{ll}10 & 20 \\ 12 & 40\end{array}\right) \longrightarrow \begin{aligned} & 10 \times 40-20 \times 12= \\ & 400-240=160\end{aligned}$
Practice：
Notation：Straight lines around a matrix（looks like an absolute value）

ロetermiпヨпt (cant.)

 3×3 matrix determinant:$$
\begin{aligned}
& =a(e i-f h)-b(d i-f g)+c(d h-e g) \\
& =a e i-a f h-b d i+b f g+c d h-c e g
\end{aligned}
$$

Fun fact: you can expand along any column or row
Expand along rows/columns with the most zeroes

ロetermiпaпt (cant.)

How to know if positive or negative term:

> Row Number + Column Number
> \rightarrow even: positive term
> \rightarrow odd: negative term

BONUS:

$$
\begin{aligned}
& \left(\begin{array}{lll}
2 & 0 & 0 \\
4 & 5 & 0 \\
7 & 9 & 4
\end{array}\right) \longrightarrow \begin{array}{c}
2 \times 5 \times 4= \\
40
\end{array} \\
& \left(\begin{array}{lll}
2 & 1 & 0 \\
4 & 5 & 0 \\
7 & 9 & 4
\end{array}\right) \longrightarrow \begin{array}{l}
2 \times(5 \times 4-0)-1 \times(4 \times 4-0)= \\
40-16= \\
24
\end{array} \\
& \left(\begin{array}{lll}
2 & 0 & 1 \\
4 & 5 & 1 \\
7 & 0 & 4
\end{array}\right) \quad \begin{array}{l}
5 \times(2 \times 4-1 \times 7)= \\
5 \times 1= \\
5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
4 & 5 & 0 & 3 \\
7 & 9 & 4 & 2 \\
3 & 0 & 0 & 8
\end{array}\right) \\
& 4 \times\left|\begin{array}{lll}
2 & 0 & 1 \\
4 & 5 & 3 \\
3 & 0 & 8
\end{array}\right|= \\
& 4 \times\left(5 \times\left|\begin{array}{ll}
2 & 1 \\
3 & 8
\end{array}\right|\right)= \\
& 4 \times(5 \times(2 \times 8-3 \times 1))= \\
& 4 \times 5 \times 13
\end{aligned}
$$

Rules af Determinants

* $\operatorname{det}($ identity $)=1$
$>$ In fact, the determinant of any matrix with zeroes below or above the diagonal is just the product of the diagonal entries. Try to explain this.
* $\operatorname{det}(c \times A)=c^{n} \times \operatorname{det}(A)$ where n is the dimension of the square matrix. Try to explain this.
* For two square matrices of equal size, A and B :
$>\operatorname{det}(\mathrm{AB})=\operatorname{det}(\mathrm{A}) \times \operatorname{det}(\mathrm{B})$ $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det}(\mathrm{A})$

Inverse

Similar to inverse of number: reciprocal

Inverse: A matrix when multiplied with the original matrix returns the identity; invertible if and only if the determinant is non-zero

Inverse

2×2 matrix inverse:

How do we find inverses for bigger matrices?

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Steps:

1) Create an augmented matrix with the invertible square on one side and the identity of appropriate size on the other.
2) Reduce to RREF.
3) The new right side is the inverse.

Inverse

Example: $\left[\begin{array}{ll|ll}1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1\end{array}\right] \rightarrow$

What are the steps to simplifying a matrix into reduced row echelon form?

1) Top left: 1.
2) Make all entries below: 0 .
3) Make second entry, second row: 1.
4) All numbers, not pivot in column, turn into Os.
5) Repeat until totally in R.R.E.F.

Inverse

Why must the determinant be non-zero?

$$
\begin{aligned}
& \operatorname{det}(\mathrm{AB})=\operatorname{det}(\mathrm{A}) \mathrm{x} \operatorname{det}(\mathrm{~B}) \\
& \mathrm{AA}^{-1}=\mathrm{I} \\
& \operatorname{det}\left(\mathrm{AA}^{-1}\right)=\operatorname{det}(\mathrm{A}) \mathrm{x} \operatorname{det}\left(\mathrm{~A}^{-1}\right)=\operatorname{det}(\mathrm{I})=1 \\
& \operatorname{det}(\mathrm{~A})=1 / \operatorname{det}\left(\mathrm{A}^{-1}\right)
\end{aligned}
$$

Review！

What operations can we da with matrices？

All Matrices

Square

Sqபヨாe
Dimensions： n by n
（same number of rows and columns）

Upper Triangular
All entries below the diagonal are zeros．

Lower Triangular
All entries above the diagonal are zeros．

ワiヨロロாヨl

All entries except on the diagonal are zero．

1）Matrix Addition（and Subtraction）
2）Scalar Multiplication（and Division）
3）Matrix Multiplication
4）Transpose
5）Determinant
6）Inverse
 $\left(\begin{array}{ll}8 & 5 \\ 6 & 7\end{array}\right)-\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=\left(\begin{array}{ll}7 & 3 \\ 3 & 3\end{array}\right)$

Identity
All entries are zero，except is on the diagonal．

If you multiply any matrix by the identity of the appropriate size，you will get back the same（an identical）matrix．

Review!

What aperatians can we da with matrices?

$$
\left(\begin{array}{ll}
2 & 3 \\
7 & 6
\end{array}\right) \times\left(\begin{array}{ll}
8 & 5 \\
4 & 1
\end{array}\right)=
$$

1) Matrix Addition (and Subtraction)
2) Scalar Multiplication (and Division)
3) Matrix Multiplication
4) Transpose
5) Determinant
6) Inverse

Review!

What aperatians can we da with matrices?

1) Matrix Addition (and Subtraction)
2) Scalar Multiplication (and Division)
3) Matrix Multiplication
4) Transpose
5) Determinant
6) Inverse

* $\quad \operatorname{det}($ identity $)=1$
$>$ In fact, the determinant of any matrix with zeroes below or above the diagonal is just the product of the diagonal entries. Try to explain this.
* $\quad \operatorname{det}(\mathrm{c} \times \mathrm{A})=\mathrm{c}^{\mathrm{n}} \times \operatorname{det}(\mathrm{A})$ where n is the dimension of the square matrix. Try to explain this.
* For two square matrices of equal size, A and B:

$$
>\quad \operatorname{det}(\mathrm{AB})=\operatorname{det}(\mathrm{A}) \times \operatorname{det}(\mathrm{B})
$$

* $\quad \operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det}(\mathrm{A})$

Determinant:

$$
\begin{aligned}
|A|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right| & =a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{cc}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
& =a(e i-f h)-b(d i-f g)+c(d h-e g) \\
& =a e i-a f h-b d i+b f g+c d h-c e g
\end{aligned}
$$

Review!

What aperatians can we da with matrices?

Inverse: A matrix when multiplied with the original matrix returns the identity; invertible if and only if the determinant is non-zero

1) Matrix Addition (and Subtraction)
2) Scalar Multiplication (and Division)
3) Matrix Multiplication
4) Transpose
5) Determinant

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

6) Inverse

2×2 matrix
inverse:

c \& d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[$$
\begin{array}{cc}d & -b \\
-c & a\end{array}
$$\right]\)

Steps:

How do we find inverses for bigger matrices?

1) Create an augmented matrix with the invertible square on one side and the identity of appropriate size on the other.
2) Reduce to RREF.
3) The new right side is the inverse.

Saurces

Khan Academy

http://www.purplemath.com/modules/mtrxadd.htm
https://www.math.hmc.edu/calculus/tutorials/linearsystems/
https://en.wikipedia.org/wiki/Transpose
http://www.mathwords.com/i/inverse_of_a_matrix.htm
http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi

