
Berkeley Math Circle – Advanced

Tuesday, November 8th

Introduction to NP-Completeness

Matt Anderson
Simons Institute / Union College

1 Warm-up: Compositeness

Recall the definitions of prime and composite.

Definition 1. Let x be a natural number.

• x is prime if x > 1 and the only natural numbers that evenly divide x are 1 and x.

• x is composite if x is not prime.

For example, the numbers {2, 7, 23} are prime and the numbers {1, 4, 42, 99} are composite.

Question 2. What method (algorithm) do you use to determine whether a number is prime or
composite?

Question 3. Suppose someone told you that a particular number x was composite. How might
they quickly demonstrate that to you?

Question 4. Suppose someone told you that a particular number x was prime. How might they
quickly demonstrate that to you?

We can describe primes and composites as languages over the natural numbers.

Definition 5. Let L ⊆ U be sets. We say that L is a language over U . The elements of L are
called YES instances of the language and the elements of U − L are called NO instances of the
language.

For example, Primes = {x | x is prime} is a language over the universe of natural numbers. The
language Composites is the complement in the natural numbers of the language Primes.

2 Algorithms and Efficiency

An algorithm is a method for completing a task.

Question 6. Have you used any algorithms today before coming to Berkeley Math Circle?

We are interested in thinking about the following kind of algorithms.

Definition 7. Let L be a language over U . A decision algorithm A for L is a method that takes
an element x of U as input and outputs whether x is a YES instance or NO instance of L. We say
A decides L in this case.

1

Ideally we want algorithms to complete their task while using the fewest resources possible.

Question 8. What are some resources that an algorithm might use?

One standard resource to consider is time. That is, how much time did it take to complete
the task? We assume that basic operations like addition, multiplication, comparison of number
take one “unit” of time to perform a single operation. In order to make running time comparable
across different instances we compare running time as a function of the input instance size. For an
instance x ∈ U we denote its size as n = |x|.

Question 9. For Composites what is a reasonable definition of instance size?

We use big-oh notation to describe the running time of algorithms. Big-oh notation captures
the dominant, long-term limit running time of an algorithm as a function of its input size.

Definition 10. An algorithm A for the language L runs in time O(f(n)) if there is a constant c
such that for all x ∈ U , A uses at most c · f(|x|) time before producing an output.

Question 11. What are the strongest running time bounds you can place on our algorithm for
Composites? How does this depend on the definition of input size for this problem.

We can define the notion of an “efficient” algorithm.

Definition 12. An algorithm A is efficient if there is a polynomial nk such that A runs in time
O(nk).

Question 13. Is our algorithm for Composites efficient?

3 P and NP

We can classify languages based on how difficult they are to solve.

Definition 14 (P). P denotes the set of all languages that can be decided efficiently.

Definition 15 (NP). NP denotes the set of all languages that whose YES instances can be verified
efficiently. This means there is a verification algorithm that takes as input an instance and a “proof”
that the instance is a YES instance and checks whether or not the proof is correct.

Thus Composites ∈ NP. (It also turns out that Composites ∈ P, however, it is much much
more difficult to argue this).

Question 16. It is the case that P ⊆ NP. Why?

P and NP are two examples of complexity classes.

2

(NP-cap-coNP)/poly

NP/poly

PP/poly

NE/poly

(k>=5)-PBP

NC^1 PBP

QNC^1

CSL

+EXP

EXPSPACE

EESPACEEEXP

+L

+L/poly +SAC^1

AL

P/poly

NC^2

P

BQP/poly

+P

ModP

SF_2

AmpMP

SF_3

+SAC^0

AC^0[2]

QNC_f^0

ACC^0

QACC^0

NC

1NAuxPDA^p

SAC^1

AC^1

2-PBP

3-PBP

4-PBP

TC^0

TC^0/poly

AC^0

AC^0/poly

FOLL

MAC^0QAC^0

L/poly

AH

ALL

AvgP

HalfP

NT

P-Close

P-Sel

P/log

UPbeta_2P

compNP

AM

AM[polylog]

BPP^{NP}

QAM

Sigma_2P

ZPP^{NP}

IP

Delta_3PSQG

BP.PP

QIP[2] RP^{NP}

MIPMIP* QIP

AM_{EXP}

IP_{EXP}

NEXP^{NP}

MIP_{EXP}

EXPH

APP

PP

P^{#P[1]}

AVBPP

HeurBPP

AWPP

A_0PP

Almost-PSPACE

BPEXP

BPEEMA_{EXP}

MP

AmpP-BQP

BQP

Sigma_3P

BQP/log

DQP

NIQSZK QCMAYQP

PH

AvgE

EE

NEE

ENearly-P

UE

ZPE

BH

P^{NP[log]}

BPP_{path}

P^{NP[log^2]}

BH_2

CH

EXP/poly

BPE

MA_E

EH

EEE

PEXP

BPL

PL

SC

NL/poly

L^{DET}

polyL

BPP

BPP/log

BPQP

Check

FH

N.BPP

NISZK

PZK

TreeBQP

WAPP

XOR-MIP*[2,1]

BPP/mlog

QPSPACE

frIP

MA

N.NISZK

NISZK_h

SZK

SBP

QMIP_{le}

BPP//log

BPP/rlog

BQP/mlog

BQP/qlog

QRG ESPACE

QSZK

QMA

BQP/qpoly

BQP/mpoly

GCSL

NLIN

QCFL

Q

NLINSPACE

RG

CZK

C_=L

C_=P

Coh

DCFL

LIN

Delta_2P

P^{QMA}S_2P

P^{PP}

QS_2P

RG[1]

NE

RPE

NEEXP

NEEE

ELEMENTARY

PR

R

EP

Mod_3PMod_5P

NP/one RP^{PromiseUP}US

EQP

LWPP

ZQP

WPP

RQP

NEXP/poly

EXP^{NP}

SEH

Few

P^{FewP}

SPP

FewL

LFew

SPL

FewP

FewUL

LogFew

RP

ZPP

RBQPYP

ZBQP

IC[log,poly]

QMIP_{ne}QMIP

R_HLUL

RL

MAJORITY

PT_1

PL_{infty}

MP^{#P}

SF_4

RNC

QNC

QP

NC^0

PL_1

QNC^0 SAC^0

NONE

PARITY

TALLY

SPARSE

NP/log

NT*

UAPQPLINbetaP

compIP

RE

QMA(2)

SUBEXP

YPP

L

NP

NL

REG

CFL

PSPACE

EXP

NEXP

P

RP

BPP

BQP

Complexity Zoo
The

https://complexityzoo.uwaterloo.ca/

You are here.

This is a slightly modified version of the diagram found here: https://www.math.ucdavis.edu/~greg/zoology/

Figure 1: There are many others complexity classes, a collection of them is maintained by the
complexity zoo – https://complexityzoo.uwaterloo.ca/Complexity_Zoo.

4 Examples of NP Problems

There are many interesting problems in NP. Some of the most intuitive ones are graph problems.
A graph G is called Hamiltonian if G has a cycle which visits all vertices exactly once. The

language HamCyc is the set of graphs that have Hamiltonian cycles.

Question 17. HamCyc ∈ NP. Why? What demonstrates that a graph is a YES instance of
HamCyc?

A related problem is the traveling salesperson problem. Let G be a graph where each edge is
labeled with a positive integer cost. An instance of the traveling salesperson problem (TSP) is a
weighted graph G and an integer k, and such an instance is a YES instance if there is a Hamiltonian
cycle of G where the sum of the weights on the cycle is at most k.

Question 18. What is the relative difficulty of deciding HamCyc and TSP?

Question 19. Argue that deciding TSP is at least as hard as deciding HamCyc.

5 Reductions

The answer to the previous question of something called a reduction. Informally a reduction is
an algorithm that takes an instance of one problem and transforms it into an instance of another
problem where membership is preserved.

Definition 20. A language L ⊆ U reduces to a language L′ ⊆ U ′ if there is a function Γ : U → U ′

where for all x ∈ U , x ∈ L iff Γ(x) ∈ L′. We denote this by L ≤ L′.

3

https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Reductions say that one problem can be decided by first transforming into another problem
and then solving the second problem. For example, we have HamCyc reduces to TSP, that is,
HamCyc is at least as hard to decide as TSP. Reductions are only interesting if they are efficiently
computable, otherwise the reduction could decide the original problem without need to decide the
second problem. All the reductions we will discuss have this property.

There is a subset of problems in NP, called NP-complete problems. These are problems that
every other problem in NP can be efficiently reduced to.

Definition 21. A language L is NP-complete if

1. L ∈ NP and

2. for all L′ ∈ NP, L′ ≤ L.

It turns out that both HamCyc and TSP are NP-complete.

Question 22. Does TSP ≤ HamCyc?

Question 23. Suppose that HamCyc ∈ P what does it say about whether TSP ∈ P?

6 P 6= NP?

The study of NP-completeness was initiated to try to understand the structure of languages in NP
and their relationship with P. This resulted in the following widely accepted conjecture.

Conjecture 24. P 6= NP

Question 25. Resolve this conjecture.

7 Other NP-complete Problems

Clique Given a graph G and a natural number k determine whether there exists a subset S of the
vertices of G where |S| = k and all pairs of vertices in S are adjacent.

Independent Set Given a graph G and a natural number k determine whether there exists a subset S of the
vertices of G where |S| = k and no pairs of vertices in S are adjacent.

Vertex Cover Given a graph G and a natural number k determine whether there exists a subset S of the
vertices of G where |S| = k and every edge of G is incident to at least one vertex in S.

Coloring Given a graph G and a natural number k determine whether there exists a coloring of G
where each vertex is assigned one of k colors and no adjacent vertices are assigned the same
color.

Partition Given a set of n numbers N = {a1, a2, . . . , an} determine whether there is a subset S ⊂ N
where the sum of elements in S is exactly half the sum of the elements in N .

Subset Sum Given a set of n numbers N = {a1, a2, . . . , an} and a number k determine whether there is a
subset S ⊂ N where the sum of elements in S is exactly k.

Knapsack Given a set of n items, N = (v1, w1), . . . , (vn, wn), where vi and wi are positive numbers giving
the value and weight of the ith item, and target value v and weight w determine whether there
is a subset of items whose weights sum to at most w and whose values sum to exactly v.

4

8 Reduction Exercises

Question 26. Show Independent Set ≤ Clique.

Question 27. Show Partition ≤ Subset Sum.

Question 28. Show Subset Sum ≤ Partition.

Question 29. Show Partition ≤ Knapsack.

Question 30. Show Independent Set ≤ Vertex Cover.

Question 31. Show that when k = 2, the Coloring is in P.

9 Satisfiability

There is one problem that is central to connecting many NP-complete problems together, and it
captures the essence of efficient verification.

A Boolean formula is like an arithmetic formula but instead of using the operations addition
(+), subtraction (-), multiplication (·), and division (/) on variable whose values are numbers it
uses the operations AND (∧), OR (∨), and NOT (¬) on variables whose values are true and false.
Recall that a ∧ b is true only when both a and b are true, and is false otherwise, and that a ∨ b is
true when at least one of a and b are true and is false otherwise. Below is an example of a Boolean
formula.

f(a, b, c) = a ∧ (b ∨ ¬c)
This formula is true under the assignment a = T, b = F , and c = F , and false when a = F, b = T,
and c = F . A Boolean formula is called satisfiable when there is some assignment to its variables
that makes it true. When there are no assignments to the variables that make a formula true it is
otherwise called unsatisfiable. The language SAT is the set of all satisfiable Boolean formula.

Question 32. SAT ∈ NP. Why?

Theorem 33 (Cook-Levin). SAT is NP-complete.

One simple kind of Boolean formula are 3-Conjunctive Normal Form formula (3CNF). A 3CNF
formula is an AND (conjunction) of a number of ORs of three variables or their negations. More
formally, every 3CNF formula f can be written as

f = ∧mi=1 ∨3j=1 lij

where each lij is either a variable or its negation. The language of satisfiability restricted to
3CNF formula is called 3SAT, that is, it consists of all 3CNF formulas that are satisfiable.

Question 34. Show 3SAT ≤ SAT, and SAT ≤ 3SAT. Hint: One direction is easy and one
direction is not.

Question 35. Show 3SAT ≤ Independent Set.

Question 36. Show 3SAT ≤ Coloring for k = 3.

Question 37. Show 3SAT ≤ HamCyc.

Question 38. Show 3SAT ≤ Partition.

5

10 Further Study

Languages often become easier to decide we relax their requirements in some way.

Question 39. For the problems discussed today we wanted algorithms that were exact, that is they
always quickly give the correct answer for every input. What if we did not require this exact form
of correctness. What are some alternative definitions of “correctness” that we could use?

Question 40. Some of the problems we discussed today took secondary parameters. What if we
assume these of the parameters where constant, would they then have efficient algorithms then?
(Hint: Think about Vertex Cover and Coloring.)

Question 41. Are there any other relaxations of problems that might make them easier to solve?

10.1 Further Reading

Here are a few references were you could learn more about this topic.

Popular Science

• Lance Fortnow. The Golden Ticket: P, NP, and the Search for the Impossible, Princeton
University Press, 2013.

• Timothy Lanzone, director. Travelling Salesman. Fretboard Pictures, 2012.

Undergraduate Textbooks

• Michael Sisper. Introduction to the Theory of Computation. Cengage Learning, 1996, 2006,
2013.

• Michael Garey and David Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co. New York, NY, USA, 1979.

6

	Warm-up: Compositeness
	Algorithms and Efficiency
	P and NP
	Examples of NP Problems
	Reductions
	P = NP?
	Other NP-complete Problems
	Reduction Exercises
	Satisfiability
	Further Study
	Further Reading

