
By Jon Walthoe

So, here's a challenge. Go and look up some numbers. A whole variety of naturally-occuring
numbers will do. Try the lengths of some of the world's rivers, or the cost of gas bills in Moldova;
try the population sizes in Peruvian provinces, or even the figures in Bill Clinton's tax return.
Then, when you have a sample of numbers, look at their first digits (ignoring any leading zeroes).
Count how many numbers begin with 1, how many begin with 2, how many begin with 3, and so
on - what do you find?

You might expect that there would be roughly the same number of numbers beginning with each
different digit: that the proportion of numbers beginning with any given digit would be roughly
1/9. However, in very many cases, you'd be wrong!

Surprisingly, for many kinds of data, the distribution of first digits is highly skewed, with 1 being
the most common digit and 9 the least common. In fact, a precise mathematical relationship
seems to hold: the expected proportion of numbers beginning with the leading digit n is

.

This relationship, shown in the graph of Figure 1 and known as Benford's Law, is becoming more
and more useful as we understand it better. But how was it discovered, and why on earth should
it be true?

Figure 1: The proportional frequency of each leading digit predicted by Benford's Law.

Newcomb's Discovery
The first person to notice this phenomenon was Simon Newcomb (http://www-groups.dcs.st-
and.ac.uk/~history/Mathematicians/Newcomb.html), a mathematician and astronomer. One day,
Newcomb was using a book of logarithms for some calculations. He noticed that the pages of the
book became more tatty the closer one was to the front. Why should this be? Apparently, people
did more calculations using numbers that began with lower digits than with higher ones.
Newcomb found a formula that matched his observations pretty well. He claimed that the
percentage of numbers that start with the digit D should be .

Newcomb didn't provide any sort of explanation for his finding. He noted it as a curiosity, and in
the face of a general lack of interest it was quickly forgotten. That was until 1938, when Frank
Benford, a physicist at the general electric company, noticed the same pattern. Fascinated by this
discovery, Benford set out to see exactly how well numbers from the real world corresponded to
the law. He collected an enormous set of data including baseball statistics, areas of river
catchments, and the addresses of the first 342 people listed in the book American Men of
Science.
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Benford observed that even using such a menagerie of data, the numbers were a good
approximation to the law that Newcomb had discovered half a century before. About 30% began
with 1, 18% with 2 and so on. His analysis was evidence for the existence of the law, but
Benford, also, was unable to explain quite why this should be so.

The first step towards explaining this curious relationship was taken in 1961 by Roger Pinkham, a
mathematician from New Jersey. Pinkham's argument was this. Suppose that there really is a law
of digit frequencies. If so, then that law should be universal: whether you measure prices in
Dollars, Dinar or Drakma, whether you measure lengths in cubits, inches or metres, the
proportions of digit frequencies should be the same. In other words, Pinkham was saying that the
distribution of digit frequencies should be "scale invariant".

Using this reasoning, Pinkham went on to be the first to show that Benford's law is scale
invariant. Then he showed that if a law of digit frequencies is scale invariant then it has to be
Benford's Law (see the proof below (/issue9/features/benford/index.html#Proof)). The evidence
was mounting that Benford's Law really does exist.

Our own experiment
Is it really that simple to find data confirming Benford's law? We looked at some data from three
sources: fundamental physical constants and vapour pressures (both from the Handbook of
Physics and Chemistry) and annual turnovers in pounds (from Kompass Business Statistics). We
chose a random collection of statistics from each of these categories, and counted up the number
of occurrences of each leading digit. We got the following results (Table 1):

Digit Fundamental constantsVapour pressuresAnnual turnovers
1 22 36 44
2 11 21 25
3 2 16 12
4 5 15 15
5 5 10 9
6 3 11 11
7 2 9 9
8 1 8 10
9 4 6 2

Totals 55 132 137
Figure 2 shows the results above expressed as relative frequencies and plotted against the
expected frequencies predicted by Benford's law:

Figure 2

As you can see, there is a reasonable (but not perfect) correspondence with the digit frequency
predictions made by Benford's law. However, as with any sampled statistics, we'd expect a better
correspondence with the predicted values if we used a larger number of samples. In fact, if we
calculate the relative frequencies of leading digits over all the sample data in table 1, we see that
the frequencies approach the Benford predictions much more closely:

answer is mind-bogglingly large.
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Figure 3

When does Benford rule?
At this point, you might be tempted to revise the way you choose your
lottery numbers: out go birthdays and in comes Benford. Will that make a
difference?

Sadly, the answer is no. The outcome of the lottery is truly random,
meaning that every possible lottery number has an equal chance of
occurring. The leading-digit frequencies should therefore, in the long run,
be in exact proportion to the number of lottery numbers starting with that
digit.

On the other hand, consider Olympic 400m times in seconds. Not very
many of these begin with 1! Similarly, think about the ages in years of
politicians around the world: not many of these will begin with 1 either!
Unlike the lottery, these data are not random: instead, they are highly
constrained. The range of possibilities is too narrow to allow a law of digit
frequencies to hold.

In other words, Benford's Law needs data that are neither totally random nor overly constrained,
but rather lie somewhere in between. These data can be wide ranging, and are typically the result
of several processes, with many influences. For example, the populations in towns and cities can
range from tens or hundreds to thousands or millions, and are affected by a huge range of
factors.

Tracking Down Fraud With Benford
Benford's Law is undoubtedly an interesting and surprising result, but what is its relevance? Well,
the evidence has been mounting that financial data also fit Benford's Law. This turns out to be
tremendously important if you're to detect (or commit!) fraud.

Dr Mark Nigrini, an accountancy professor from Dallas, has made use of this to great effect. If
somebody tries to falsify, say, their tax return then invariably they will have to invent some data.
When trying to do this, the tendency is for people to use too many numbers starting with digits in
the mid range, 5,6,7 and not enough numbers starting with 1. This violation of Benford's Law
sets the alarm bells ringing.

Dr Nigrini has devised computer software that will check how well some submitted data fits
Benford's Law. This has proved incredibly successful. Recently the Brooklyn district attorney's
office had handled seven major cases of fraud. Dr Nigrini's programme was able to pick out all
seven cases. The software was also used to analyse Bill Clinton's tax return! Although it revealed
that there were probably several rounded-off as opposed to exact figures, there was no indication
of fraud.

This demonstrates a limitation of the Benford fraud-detection method. Often data can diverge
from Benford's Law for perfectly innocent reasons. Sometimes figures cannot be given precisely,
and so rounding off occurs, which can change the first digit of a number. Also, especially when
dealing with prices, the figures 95 and 99 turn up anomalously often because of marketing
strategies. In these cases use of Benford's Law could indicate fraud where no such thing has



occured. Basically the method is not infallible.

However, the use of this remarkable rule is not restricted to hunting down fraud. There is already
a system in use that can help to check computer systems for Y2K compliance. Using Benford's
Law, it is possible to detect a significant change in a firm's figures between 1999 and 2000. Too
much of a change could indicate that something is wrong.

Time, money and resources can be saved if computer systems are managed more efficiently. A
team in Freiburg is working on the idea of allocating computer disk space according to Benford's
Law.

Scientists in Belgium are working on whether or not Benford's Law can be used to detect
irregularities in clinical trials. Meanwhile, the good correlation of population statistics with
Benford's Law means that it can be used to verify demographic models.

Who knows where else this might prove useful? Dr Nigrini says "I forsee lots of uses for this stuff,
but for me it's just fascinating in itself. For me, Benford is a great hero. His law is not magic but
sometimes it seems like it".

Deriving Benford's Law
As Pinkham argued, the fact that we can find all kinds of data in the real world that seem to
conform to Benford's Law suggest that this law must be scale invariant. Why? Because we can
measure our data using a range of different scales (feet/metres, pounds/dollars, gallons/millilitres
etc). If the the digit frequency law is true, it must be true for all of them (there's no reason why
only one measurement scale, the one we happened to choose, should be the "right one").

So if there is a distribution law of first significant digits, it should hold no matter what units
happen to have been used. The distribution of first significant digits should not change when
every number is multiplied by a constant factor. In other words, any such law must be scale
invariant.

Equally likely digits are not scale invariant
Most people have the intuition that each of the digits 1..9 are equally likely to appear as the first
significant digits in any number. Let's suppose this is the case and see what happens with a set of
accounts that are to be converted from sterling to the euro at the (fictional) rate of 2 euros to the
pound.

It's fairly easy to work out what will happen by looking at each digit in turn. If the first significant
digit is 1, then multiplying by 2 will yield a new first digit of 2 or 3 with equal probability. But if
the first significant digit is 5 or 6 or 7 or 8 or 9 the new first digit must be 1. It turns out that in
the new set of accounts, a first digit of 1 is 10 times more likely than any other first digit!

In the diagram below, the notation [a,b) means the range of numbers greater than or equal to a,
but strictly less than b.

Figure 4: Equiprobable digit distribution changes with scaling

Our intuition has failed us - the original uniform distribution is now heavily skewed towards the



digit 1. So if scale invariance is correct, the uniform distribution is the wrong answer.

Pinning down scale invariance
So what does scale invariance of the distribution of the first significant digit really mean? It
means that if we multiply all our numbers by an arbitrary constant (as we do when we change
from pounds to yen, or feet to metres), then the distribution of first digit frequencies should
remain unchanged.

Since we are interested in the distribution of first significant digits it makes sense to express
numbers in scientific notation  where . This is possible for all numbers except
zero. The first significant digit -  is then simply the first digit of . We can easily derive a scale
invariant distribution for  once we have found a scale invariant distribution for .

If a distribution for  is scale-invariant, then the distribution of  should remain
unchanged when we add a constant value to . Why? Because we would be multiplying  by
some constant , and .

Now, the only probability distribution on  in  that will remain unchanged after the addition
of an arbitrary constant to , is the uniform distribution. To convince yourself of this, think about
the shape of the probability density function for the uniform distribution.

Figure 5

In figure 5,  is uniformly distributed between  and .

If we want to find the probability that  is  we have to evaluate

To find this we calculate the integral

which is approximately . In general

(-1)

and this is given by

(-1)

The expression  was exactly the formula given by Newcomb and later Benford for
the proportion of numbers whose first digit is . So, we can show that scale invariance for a
distribution of first digit frequencies of  implies that this distribution must be Benford’s Law!
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