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What is a counting number?

A set is any collection of objects of any nature. The “objects” are
called elements of this set. A set A is considered given, if for every
object in the Universe it is known whether it is an element of set A or
not.
Definition: Two sets of objects are said to have the same number

of elements, if their elemets can be matched with each other. (Source:
A kindergarten math book.)
Examples: In a full classroom, there are as many chairs as there are

students (because each chair is occupied by a student). There are as
many working days of the week as there are fingers on my right hand
(because the days can be counted by unbending the fingers: Mo-Tu-
We-Th-Fr).
An abstract question: What is a number?

An equally abstract answer: A counting number, for example 5, is
the class of all those sets whose elements can be matched with fingers
on my right hand. By saying that a set has 5 elements we mean that
the set belongs to this class; that is, that the elements of this set can
be matched with fingers of my right hand.
More generally, “To have the same number of elements” is an equiva-

lence relation between sets. Namely, all sets are partitioned into classes
according to whether they have the same number of elemets or not. All
sets which have the same number of elements (that is, whose elements
can be matched with each other) form one equivalence class. Two
sets whose elements are impossible to match (for instance, all days of
the week, and all months of the year) belong to different equivalence
classes. The point is: all this makes sense for infinite sets as well.

Hilbert’s Hotel

It is a 5-star hotel situated on inter-star track I-5 at the outscirts of
the Milky Way galaxy.
One day, a visitor knocks on the door:

“Do you have a vacant room?”
“All rooms are occupied,” says the guy at the reception desk.
“Could you find a room for me, please?” begs the guest, “I’ve traveled
for 5 light years and need rest.”
“No problem, here is your key from room number 1,” is the reply.
Question: How can this be?
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Answer: Hilberts’ Hotel has infinitely many rooms numbered 1, 2,
3, . . . All rooms are occupied, but when the new visitor is given the
key for room 1, the occupant of room 1 moves to room 2, of room 2 to
room 3, and so on. Conclusion: 1 +∞ = ∞.

Problem 1. Invent stories about Hilbert’s Hotel which show that

5 +∞ = ∞, ∞+∞ = ∞, ∞×∞ = ∞.

Problem 2. Let Z+ denote the set of all positive integers 1, 2, 3, ...,
and Q+ the set of all positive fractions m/n. Do these sets have the
same number of elements?

Continuum

Problem 3. Which of the following sets of points in the plane have
the same number of elements, and which do not?
(a) closed interval [A,B] (including the endpoints)
(b) semi-interval [A,B) (the endpoint B is excluded)
(c) open interval (A,B) (both ends are excluded)
(d) a straight line
(e) s circle (the curve)
(f) a disk (the region enclosed by the circle)
(g) a square
(h) a triangle

The tribes of Mumbo and Jumbo

Problem 4. These tribes argue whose language is richer. The
Mumbo people claim that their language is richer, because there exists
a Jumbo–Mumbo dictionary where all words of the Jumbo language are
translated by distinct words of the Mumbo language, while some words
of the Mumbo language remain unused. The Jumbo people claim that
their language is richer, because there exists a Mumbo–Jumbo dic-
tionary, where all words of Mumbo are translated by distinct words
of Jumbo, while some words of the Jumbo language remain unused.
Prove that Mumbo and Jumbo have the same number of words; that
is, construct yet another dictionary which matches exacty all words of
one language to all words of the other.
Remark: This is known set theory as The Cantor–Bernstein The-

orem. It says that if set A has the same number of elemens as some
subset of set B, and B has the same number of elements as some subset
of A, then A and B have the same number of elemnts.
Exercise: Use the theorem to prove that (a–e) have the same num-

ber of elements, and (f–h) have the same number of elements.



3

Problem 5. Prove that an interval [0, 1] of the number line has the
same number of elements as the unit square: [0, 1]× [0, 1].
Hint: Let x = .x1x2x3... and y = .y1y2y3... be coordinated of a point

in the square writtent in their decimal representation. Take the corre-
sponding point z = .z1z2z3... on the segment [0, 1] to be .x1y1x2y2....

Cantor’s diagonal argument

Definition. A set which has the same number of elements as
Z+ = {1, 2, ...} is called countable. A set that has the same number of
elements as an interval (say [0, 1)) is called continuum.

Theorem. Continuum is uncountable.

Proof. We’ll prove that any countable list of points of [0, 1) does not
contain all such points. Let this be the list:

1 .x1x2x3x4...

2 .y1y2y3y4...

3 .z1z2z3z4...

4 · · ·

...

where the rows are decimal representations of the point x, y, z, . . . of the
list, and the left column is their numbers in the list. (Let’s assume for
the sake of uniqueness of decimal representation, that a tail of 9s is not
allowed.) Following Cantor, consider the sequence of the digits on the
diagonal of the table: .x1y2z3 . . . . Then construct another sequence,
.x̄1ȳ2z̄3 . . . , replacing every occurence of digit 0 with 1, and digits other
than 0 with 0. For example, if the diagonal sequence is .31029109909...,
then the newly constructed sequence is .00100010010.... Then the point
in [0, 1) reprezented by the decimal fraction

.x̄1ȳ2z̄3 . . .

is not on the list. Indeed, it differs from the 1st row by the 1st digit,
from the 2nd row by the 2nd digit, from the 3rd row by the 3rd digit,
and so on.


