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If you put n + 1 objects into n boxes, you are bound to end up with at
least two in the same box. That’s all there is to the pigeonhole principle
(which you may sometimes also hear called Dirichlet’s principle). There are
some variants: if you put mn+ 1 objects into n boxes, you will end up with
at least m + 1 objects in one box; if you put infinitely many objects into
a finite number of boxes, at least one box will have an infinite number of
objects.

It’s hard to believe such a simple idea could have useful applications,
but in fact it comes up surprisingly often. The first difficulty is recognizing
a pigeonhole problem when one comes along. If a problem calls for two
elements of a set to have some property in common or to be near one another
in some way, that is a good indication. Once you have decided the pigeonhole
principle applies, a second difficulty is figuring out what the “boxes” should
be. Often this is a question of grouping possible choices in a suitable way.
Sometimes, when you have done this, you are finished, but another trick may
be needed to take advantage of the fact that two objects land in the same
box.

Here are some problems which illustrate the variety of possible applica-
tions of the pigeonhole principle. Some are relatively straightforward, but
some are very hard even if you know that they are pigeonhole problems.

1. Five points are chosen in a unit square. Prove that some pair of them
are within distance 1/

√
2 of each other.

2. A room contains n ≥ 2 people, some of whom shake hands. Show that
there are two people who each end up shaking hands with the same
number of other people.
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3. A hexagon is inscribed in a unit circle. Prove that the shortest side has
length ≤ 1.

4. Show that if n is odd, there exists m > 0 such that 2m is congruent to
1 (mod n).

5. Show that the decimal representation of some power of 2 begins either
999 or 1000.

6. Show that there exists some n, 0 < n < 1, 000, 000, such that the nth
Fibonacci number is divisible by 1, 000. Recall that F1 = F2 = 1 and
Fn+2 = Fn+1 + Fn for n ≥ 1.

7. Given 9 points P0, P1, . . . , P8 in R3, show that there exist distinct pos-
itive integers i and j such that 6 PiP0Pj is at most π/2.

8. Show that every n + 1 element subset of {1, 2, 3, . . . , 2n} contains two
distinct elements one of which divides the other.

9. Show that there exists an integer which can be written as a sum of 3
perfect squares in at least 2014 different ways.

10. Show that for each n there exist finitely many n-tuples of positive
integers (a1, . . . , an) such that 1/a1 + · · ·+ 1/an = 1.

11. Show that given five real numbers x1 < x2 < . . . < x5 there exist i and
j such that 0 < xi−xj

1+xixj
< 1.

12. Show that if p is a prime and n2 +1 ≡ 0 (mod p), then p can be written
as a sum of two squares.

13. Show that for every positive integer N , there exist integers m,n such
that 0 < n ≤ N and |m−n

√
2| < 1/N . Deduce that there are infinitely

many solutions in integers m and n to |m2 − 2n2| = 1.

14. Show that embedded in any sequence of 101 numbers x0, x1, . . . , x100,
all different, is a subsequence of 11 terms (not necessarily consecutive)
which is either an increasing sequence or a decreasing sequence.

2


