Basics in Geometry I at the Berkeley Math Circle-Beginners with Zvezdelina Stankova, BMC Director April 22, 2014

Let triangle ABC have a right angle at C, and let M be the midpoint of the hypotenuse AB. Choose a point D on line BC so that angle CDM measures 30 degrees. Prove that the segments AC and MD have equal lengths.

Laura won the local math olympiad and was awarded a "magical" ruler. With it, she can draw (as usual) lines in the plane, and she can also measure segments and replicate them anywhere in the plane. She can also divide a segment into as many equal parts as she wishes; for instance, she can divide any segment into 17 equal parts. Laura drew a parallelogram *ABCD* and decided to try out her magical ruler. With it, she found the midpoint *M* of side *CD*, and she extended side *CB* beyond *B* to point *N* so that segments *CB* and *BN* were equal in length. Unfortunately, her mischievous little brother came along and erased everything on Laura's picture except for points *A*, *M* and *N*. Using Laura's magical ruler, help her reconstruct the original parallelogram *ABCD*: write down the steps that she needs to follow and prove why this will lead to reconstructing the original parallelogram *ABCD*.

Area Mathematical Olympiad

Let C be a circle in the xy-plane with center on the y-axis and passing through A = (0, a)and B = (0, b) with 0 < a < b. Let P be any other point on the circle, let Q be the intersection of the line through P and A with the x-axis, and let O = (0, 0). Prove that $\angle BQP = \angle BOP$.

Let ABC be a triangle with D the midpoint of side AB, E the midpoint of side BC, and F the midpoint of side AC. Let k_1 be the circle passing through points A, D, and F; let k_2 be the circle passing through points B, E, and D; and let k_3 be the circle passing through C, F, and E. Prove that circles k_1 , k_2 , and k_3 intersect in a point.

Let ABC be a scalene triangle with the longest side AC. (A scalene triangle has sides of different lengths.) Let P and Q be the points on the side AC such that AP = AB and CQ = CB. Thus we have a new triangle BPQ inside triangle ABC. Let k_1 be the circle circumscribed around the triangle BPQ (that is, the circle passing through the vertices B, P, and Q of the triangle BPQ); and let k_2 be the circle inscribed in triangle ABC (that is, the circle inside triangle ABC that is tangent to the three sides AB, BC, and CA). Prove that the two circles k_1 and k_2 are concentric, that is, they have the same center.

II. STARTING FROM THE BEGINNING: BASIC TRIANGLES AND QUADRILATERALS

Problem -7. Describe in words which triangles are called:

a) equilateral; b) isosceles; c) scalene; d) right; e) acute; f) obtuse; g) right isosceles.

Draw a couple of triangles of each type. You may use your ruler, right triangles, and protractor.

Problem -6. Let's think about the various types of triangles.

- a) Is an *equilateral* triangle also *isosceles*? If yes, in how many ways? If no, why not?
- b) Is an *isosceles* triangle *equilateral*? Can it happen sometimes? Explain.
- c) Can a triangle be both *scalene* and *equilateral*? Both *scalene* and *isosceles*?
- d) At most how many right angles can a triangle have? What are the other angles?
- e) At most how many *obtuse* angles can a triangle have? What are the other angles?
- f) How many *acute* angles can a triangle have <u>at most</u>? <u>At least</u>?*
- g) Is there an *obtuse* triangle which is *isosceles*? How about an *equilateral obtuse* triangle?

Problem -5. Look at any isosceles triangle that you have drawn above. Measure its angles with a protractor. What do you notice? Repeat for any equilateral triangle drawn above. Explain.

Problem -4. Pick any triangle that you have drawn above, measure its three angles with a protractor and then add them up. What did you (approximately) get? What do you conclude the sum of the angles in a triangle is most likely to always be? Can you explain why this is so?

Problem -3. Draw the following Venn diagrams as elegantly as possible:

- a) Venn diagram of all triangles according to their sides: equilateral, isosceles, scalene.
- b) Venn diagram of all triangles according to their angles: acute, right, obtuse.
- c) Venn diagram of all triangles according to their sides and angles: equilateral, isosceles, scalene, acute, right, obtuse.

Problem -2. Describe in words which figure is called a:

a) *square*; b) *rectangle*; c) *parallelogram*; d) *rhombus*; e) *trapezoid*; f) *deltoid*; g) *quadrilateral*.

(<u>Warning</u>: Some adults may disagree on what a trapezoid is! To set the record straight, and in view of what awaits for you in college, we shall say that "A *trapezoid* is a quadrilateral with <u>at</u> <u>least</u> one pair of parallel sides." So, is a parallelogram a trapezoid? Further, a *deltoid* is a kite, i.e., two adjacent sides are equal and the other two adjacent sides are also equal.)

Problem -1. Let's think about the various types of quadrilaterals. For each question, answer whether this happens: Always? Never? Sometimes? Why or why not?

- a) Is a rectangle a square? Is a square a rectangle?
- b) Is a parallelogram a rectangle? Is a rectangle a parallelogram?
- c) Is a parallelogram a rhombus? Is a rhombus a parallelogram?
- d) Is a trapezoid a parallelogram? Is a parallelogram a trapezoid?
- e) Is a trapezoid a rectangle? Is a rectangle a trapezoid?
- f) Is a square a trapezoid? Is a square a rhombus? Is a square a deltoid?
- g) Is a rhombus a deltoid? Is a trapezoid a deltoid?

Problem 0. Using your answers from Problem -1, draw a *Venn diagram* that represents the relationships between all types of quadrilaterals discussed in Problem -2.