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1. Basics on Restricted Patterns

1.1. The primary object of study. We agree to write a permutation τ of length k in

one-row notation as (a1, a2, . . . , ak) where τ(i) = ai for 1 ≤ i ≤ k. For k < 10 the commas

can be supressed without causing confusion. As usual, Sn denotes the symmetric group on

[n] = {1, 2, ..., n}.
The definition below is the fundamental one that underpins the whole area of restricted

patterns:

Definition 1. Let τ and π be two permutations of lengths k and n, respectively. We say

that π is τ -avoiding if there is no subsequence iτ(1), iτ(2), ..., iτ(k) of [n] such that π(i1) <

π(i2) < . . . < π(ik). If there is such a subsequence, we say that it is of type τ , and denote

this by
(
π(iτ(1)), π(iτ(2)),..., π(iτ(k))

)
≈ τ .

As one can see, without several examples worked out with a pencil and paper, this formal

definition is not very insightful. To understand where restricted patterns really originated

from, we draw on visual imagery and replace “one-dimensional” permutations by “two-

dimensional” objects, matrices. In doing so, we shall violate the customary labeling of the

top row as the “first” row of a matrix. Instead, we shall coordinatize our matrices from the

bottom left corner, just like in a Cartesian coordinate system; thus, the origin will always

be placed at the bottom left corner of the matrix (cf. Fig. 1) so that our first row will be

the bottom row, and our first column will be (as usual) the leftmost column of a matrix.

This is done in order to keep the resemblance with the “shape” of permutations, in other

words, with their graphs as functions π : [n] → [n].

π = (132)  = = M(132)
1
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Figure 1. Permutation matrix M(132)

Here is a simple example to start with (cf. Fig. 1). The matrix M(132) associated to

π = (132) is a 3×3 matrix with dots in cells (1, 1), (2, 3) and (3, 2). Figure 2 displays the

larger matrices M(52687431), M(3142) and M(2413). In general,

1This is a paper in progress and contains some unfinished notes.
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Definition 2. Let π ∈ Sn. The permutation matrix M(π) is the n× n matrix Mn having

a 1 (or a dot) in position (i, π(i)) for 1 ≤ i ≤ n.
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M(52687431)

M(3142) M(2413)

Figure 2. (52687431) ̸∈ S8(3142), but (52687431) ̸∈ S8(2413)

As the reader has probably observed by now, a permutation matrix is nothing but an

arrangement of n non-attacking rooks on an n× n board, called a transversal of the board

with elements the “1’s”, or the “dots”.

The original pattern-avoidance Definition 1 is designed in such a way that a permutation

π ∈ Sn contains a subsequence τ ∈ Sk exactly when the matrix M(π) contains M(τ) as a

submatrix. For instance, Figures 2a-b demonstrate that π = (52687431) has a subsequence

(6273) of type (3142) exactly because M(52687431) has a 4 × 4 submatrix formed by the

rows and columns of (6273) and identical to M(3142). On the other hand, it is not hard

to convince yourself that no submatrix identical to M(2413) (cf. Fig. 2c) is contained in

M(52687431), and thus (52687431) avoids the permutation (2431).

We conclude that avoidance of permutations is an equivalent notion to avoidance among

permutations matrices: permutation π avoids τ if and only if matrix M(π) avoids M(τ),

i.e. M(π) does not contain a submatrix identical to M(τ).

1.2. Interpretation of 231-avoidance. We shall fix now one permutation τ and inves-

tigate the set of permutations of length n avoiding τ . This set is denoted by Sn(τ). To

flesh out our understanding of pattern avoidance, let us describe one initial but nevertheless

striking example: that of Sn(231).

In [14] Knuth shows that Sn(231) is precisely the set of stack-sortable permutations (cf.

also [20]). To visualize the situation, imagine a train station with one main track, and one

dead-end side track used for storing temporarily wagons. A cargo train is coming into the

station from the right along the main track (cf. Fig. 3). Its four wagons (starting with the

leading one) are numbered by “4”, “1”, “3” and “2”. The goal is to rearrange the wagons

so that the train leaves the station with wagons numbered in increasing order, “1”, “2”,

“3”, “4”. We can use the side track to store as many wagons as we wish, however, at any

time we can pull out only the most recently stored wagon onto the main track and we must

push it immediately forward to join the sorted out train.
The reader can easily spot the solution to sorting out the given train “4132”, and just as

easily realize that this is impossible if the incoming train were labelled “3142” because of its
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Figure 3. Stack-sortability, 231-avoidance, and Lattice paths

subsequence (342) of type (231). It turns out that containing the permutation (231) is the

only obstruction to sorting out our trains. Thus, the permutations that can be sorted out

in the above way, the so-called stack-sortable permutations, are precisely those that avoid

(231).

Evidently, two different such permutations have different sorting algorithms. Further-

more, the sorting algorithm for each such permutation of length n is unique, encoded by

binary strings of length 2n, where “0” stands for “move into the stack”, while “1” – for

“move out of the stack”. Since we can’t move out of the stack more wagons than what

is currently stored there, these binary strings can be thought of as properly parenthesizes

expressions with “(” and “)” replacing corespondingly “0” and “1”. Such expressions, on

the other hand, are nothing else but lattice walks from the origin (0, 0) to the point (n, n)

that do not cross the diagonal y = x and that are composed only of unit-length steps to the

right or up. For instance, our train (4132) can be encoded as 00100111=”(()(()))”, which

in turn is the lattice path shown in Figure 3b.

But as it is well-known, the Catalan numbers cn also count exactly the same lattice

paths!2 Making a full circle around, we conclude that

(1) |Sn(231)| = cn for all n ≥ 1.

For instance, there are c4 = 14 trains of length 4 which can be sorted out. Equation (1) is

the first elementary, yet non-trivial enumerative result on restricted patterns, which should

have given the reader a flavor of the rich combinatorial possibilities in this field. Even

though enumerating the various sets |Sn(τ)| is a worthy and challenging problem in itself

(and we shall come to it in a later part of the paper), we mainly view it as a vehicle to

solving a much more enticing puzzle.

1.3. Wilf-equivalence. Comparing two different permutations τ and σ in our setting nat-

urally leads to comparing their associated Sn-subsets, Sn(τ) and Sn(σ).

Definition 3. Two permutations τ and σ are Wilf-equivalent, denoted by τ ∼ σ, if they

are equally restrictive on any length permutations, i.e.

|Sn(τ)| = |Sn(σ)| for all n ∈ N.

2The Catalan numbers are given by: cn = 1
n+1

(
2n
n

)
=

∑n
i=1 ci−1cn−i, c0 = c1 = 1.
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The classification of permutations up to Wilf-equivalence is the first classic and still far

from resolved question in the field of restricted patterns. To get a feeling for it, let us

investigate the first non-trivial situation, in S3 (for there is nothing interesting to say in S1

or S2).

∼ ?∼ ∼ ∼ ∼

(123)(321) (132) (312) (213) (231)

Figure 4. Classification of S3 up to Wilf-equivalence

In Figure 4 we have grouped the six permutations of S3 into two symmetry classes:

{(321), (123)} and {(132), (312), (213), (231)}. It is evident that within each such class

the permutations are Wilf-equivalent; for instance, if you flip the matrix M(321) across

a horizontal axis, you will obtain the matrix M(123); this same flip induces a bijection

Sn(321) ∼= Sn(123), rendering (321) and (123) as Wilf-equivalent. Similarly, flippingM(132)

across a horizontal, vertical or diagonal axis of symmetry produces M(312), M(213) and

M(231), and implies (132) ∼ (312) ∼ (213) ∼ (231). In general, acting by the dihedral

group (or the symmetries of the square) on the n×n permutation matrices produces classes

of Wilf-equivalent permutations; the orbits of this action are the above-mentioned symmetry

classes of permutations.

Thus, we have split S3 into two symmetry classes, and the only thing left to resolve is

whether permutations from different classes are Wilf-equivalent. At the behest of Wilf,

a bijection Sn(123) ∼= Sn(132) was suggested by Knuth [14], and shown by Rotem [20],

Richards [19], Simion-Schmidt [21], and West [29]. We do not discuss these proofs here,

for we shall later, that this situation is a specific instance of a much wider phenomenon.

As an exercise, the reader is encouraged to produce one such bijection, or prove that, say,

|Sn(123)| = cn. We conclude that

Theorem 1. S3 consists of a single Wilf-class, and |Sn(τ)| = cn for all τ ∈ S3.

The situation is considerably more complicated already on the level of S4, not to mention

longer permutations. We will return to the classic Wilf-classification in the main part of

the paper.

1.4. Wilf-equivalent pairs. Nothing prevents us from “forbidding” several permutations

at a time. In other words,

Definition 4. For a collection Ω of permutations (not necessarily of the same length)

we denote by Sn(Ω) the set of permutations in Sn avoiding everything in Ω: Sn(Ω) =

∩τ∈ΩSn(τ). If two collections Ω and Υ are equally restrictive on any length permutations,

i.e. |Sn(Ω)| = |Sn(Υ)| for all n, then Ω and Υ are called Wilf-equivalent, which we denote

by Ω ∼ Υ.
4



Considerable attention in the field has been devoted to studying Wilf-equivalent pairs.

According to a classic result of Erdös and Szekeres [11], the identity permutation Ik =

(1, 2, 3, . . . , k) and its reverse Jk = (k, k − 1, . . . , 2, 1) impose too many conditions on

large enough permutations, and hence cannot be avoided simultaneously; more precisely,

|Sn(Ik, Jl)| = 0 for n > (k − 1)(l − 1).

More than two decades ago, Simion-Schmidt [21] classified pairs in S3 up to Wilf-

equivalence. Figure 5 displays a representative pair for each of the 5 symmetry classes

(pairs are indicated by “+”), and only 2 Wilf-equivalences between these symmetry classes.

Thus, for instance, {(132), (231)} ∼ {(132), (213)} ∼ {(123), (132)} accounts for the first

Wilf-class. For each of the resulting 3 Wilf-classes, a number on the side corresponds to

|Sn(τ1, τ2)|, e.g. |Sn((123), (231))| =
(
n
2

)
+ 1. The size 0 for the third Wilf-class is nothing

but the above-mentioned Erdös-Szekeres result.

∼ ∼+ + +

+ +

2n−1

(
n
2

)
+ 1 0 for n ≥ 5

Figure 5. Wilf-classes of pairs in S3

Theorem 2 (Simion-Schmidt). There are 5 symmetry classes of pairs (τ, σ) of permu-

tations of length 3, with representatives3 (132, 231), (132, 213), (123, 132), (123, 231), and

(123, 321). There are 3 Wilf-classes of such pairs: the first three symmetry classes join to

form one Wilf-class, and the last two symmetry classes stay separate to form two more Wilf-

classes. Each Wilf-class produces Sn-subsets of the following sizes: |Sn(132, 231)| = 2n−1

and |Sn(123, 231)| =
(
n
2

)
+ 1 for all n ≥ 1, while |Sn(123, 321)| = 0 for n ≥ 5.

The reader is again encouraged to prove these results, whether by direct enumeration of

the sizes |Sn(τ1, τ2)| of each symmetry class, or by finding explicit bijections between these

symmetry classes.

A vast amount of research has been generated by the study of Wilf-equivalence of pairs.

Not surprisingly, the classification of (4, 4) pairs (i.e. pairs in S4) already demands a variety

of new methods and deeper analysis. What is surprising is that non-trivial Wilf-equivalences

among pairs seem to occur lot more frequently than among singleton of permutations. We

shall see examples of this later, but for now it suffices to say that this phenomenon has not

been yet explained at all.

3For convenience, we have dropped the parentheses around each permutations.
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1.5. Beyond Wilf-equivalence. Even if we manage to classify all permutations up to

Wilf-equivalence, there will still be quite a few questions left to answer. For instance,

if τ ̸∼ σ, then for some n one of the two sets Sn(τ) and Sn(σ) must be smaller, say,

|Sn(τ)| < |Sn(σ)|. This would mean that τ occurs more often as a subpattern of length-n

permutations and hence τ is “harder” to avoid in Sn than σ. Formally,

Definition 5. If |Sn(τ)| ≤ |Sn(σ)| for all n ∈ N, we say that τ is more restrictive than σ,

and denote this by τ ≼ σ.

As usual, let’s examine the initial cases of Wilf-ordering. There is nothing to say for S3,

as everything there is Wilf-equivalent to anything else. To talk about Wilf-ordering in S4,

we must first understand the Wilf-equivalences in S4.

Theorem 3 (Stankova,West). There are 7 symmetry classes in S4, whose representatives

enter in the following Wilf-equivalences: (1234) ∼ (1243) ∼ (2143) ∼ (4123), (4132) ∼
(3142), and (1324) stays separate, for a total of 3 Wilf-classes.

Representatives of each Wilf-class appear in Figure 6a. The Wilf-classification of S4

was completed over several years by West [29] and Stankova [22, 23]. It required several

new methods and is definitely not an easy exercise to offer to the reader for practice. We

shall discuss it in detail in a later section. Meanwhile, let’s see how the 3 Wilf-classes in

S4 measure against each other. In [5, 7], Bóna provided the only known so far result on

complete Wilf-ordering of Sk:

Theorem 4 (Bóna). The three Wilf-classes in S4 are ordered as (1342) ≼ (1234) ≼ (1324):

(2) |Sn(1342)| < |Sn(1234)| < |Sn(1324)| for n ≥ 7.

≼ ≼ ?

Figure 6. Total Wilf-ordering on S4 and S5

For each of the two inequalities, Bóna created essentially a new method containing a

number of beautiful sophisticated ideas, to which a couple of paragraphs here will not

serve justice. More recently, Stankova [25] devised another way of viewing the problem via

decomposable permutations and generalized Bóna’s result to arbitrary lengths.

The point is: even the first non-trivial case of Wilf-ordering generated a great deal of

new research, and is indeed far from trivial. The ultimate success in Wilf-ordering S4 raised

hopes for an old conjecture of West, according to which any two permutations (of same
6



length) can be ordered, and hence there is total Wilf-ordering on any Sn. Yet, after years

of fruitless search for a proof, a counterexample was found by Stankova already in S5:

S7(53241) < S7(43251) but S13(53241) > S13(43251),

so that these two permutations cannot be Wilf-ordered (cf. Fig. 6b). A number of coun-

terexamples were further traced in S6 and S7 (cf. [24]), and this completely obviated any

hopes for a total Wilf-ordering of a general Sk. What next?
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