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1. An Exhaustive Survey versus Paths for Further Research

Restricted patterns made their major debut into the math arena in the 1980’s, with the

works of Lothaire, Lovász, Richards, Rotem, Schmidt, Simion, Wilf, and many others. In

truth, they had already permeated mathematical research since the 1960’s via Knuth’s,

Robinson-Schensted’s and Stanley’s earlier results. The more recent re-birth of the topic

was initiated by West in 1990’s, and taken up by a number of researchers, including Albert,

Arratia, Backelin, Babson, Bóna, Mansour, Marcus, Stankova, and Tardos. Any time you

stumble upon the Catalan, Fibonacci, or Stirling numbers, Dyck paths, Young diagrams,

random matrices, generating trees or Chebychev or Kazhdan-Lusztig polynomials, restricted

patterns are likely to appear in one reincarnation or another.

The topics stemming from or related to restricted patterns are so numerous that the

means of a single paper are vastly insufficient to even briefly mention all of them. Thus, we

are “restricted” in this paper to pursuing only several paths of pattern exploration, which

we can roughly group in the following themes:

• the original Wilf-classification of permutations up to S8, and necessary computer

aid for further study;

• the classification of pairs of permutations up to S6, and comparison with singletons,

as well as triples or quadriples, of restricted permutations;

• difficulties and possibilities in ordering and asymptotic ordering of Wilf-classes of

singleton permutations;

• extensions of the classical Stanley-Wilf limits along paths of Young diagrams and

the algebraic closure of the resulting set of limits.

In view of the above, the current paper does not claim to be an exhaustive survey of

restricted patterns, but rather a survey of several research paths which originated at the

Research Experience for Undergraduates Program in Duluth in 1991-1992, and have been

developed by Duluth alumni and other mathematicians for over a decade. The paper

emphasizes the view of the author on important aspects and possibilities which will likely

affect the future research of these topics. New and old conjectures and open questions will

therefore permeate this study.

1This is a paper in progress and contains some unfinished notes.
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Major contributors to the results discussed here are (in alphabetic order): Arbres, Bóna,

Gire, Kremer, Le, Mansour, Shiu, Sophie, Stankova, and West. Many others will be also

mentioned in due time. Because of the immense cross-referencing and intertwining of results

of various people, it is practically impossible to track down and attribute the original source

of every single idea in this paper; most of the unattributed ideas have originated in the course

of the author’s own research, and I will be grateful if further references are pointed out by

the reader.

The paper strives to be written in an easy-to-follow style, intended to encourage future

young, as well as “seasoned,” researchers to pursue the outlined topics. Although some

of the posed questions could conceivably be attacked with the existing methods and the

suggested new strategies, the reader should not be deceived: many of the questions in this

paper will require deeper analysis, completely new approaches and links to other math areas

that have not been discovered yet.
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3. Basics on Restricted Patterns

3.1. The primary object of study. We agree to write a permutation τ of length k in

one-row notation as (a1, a2, . . . , ak) where τ(i) = ai for 1 ≤ i ≤ k. For k < 10 the commas

can be supressed without causing confusion. As usual, Sn denotes the symmetric group on

[n] = {1, 2, ..., n}.
The definition below is the fundamental one that underpins the whole area of restricted

patterns:

Definition 1. Let τ and π be two permutations of lengths k and n, respectively. We say

that π is τ -avoiding if there is no subsequence iτ(1), iτ(2), ..., iτ(k) of [n] such that π(i1) <

π(i2) < . . . < π(ik). If there is such a subsequence, we say that it is of type τ , and denote

this by
(
π(iτ(1)), π(iτ(2)),..., π(iτ(k))

)
≈ τ .

As one can see, without several examples worked out with a pencil and paper, this formal

definition is not very insightful. To understand where restricted patterns really originated

from, we draw on visual imagery and replace “one-dimensional” permutations by “two-

dimensional” objects, matrices. In doing so, we shall violate the customary labeling of the

top row as the “first” row of a matrix. Instead, we shall coordinatize our matrices from the

bottom left corner, just like in a Cartesian coordinate system; thus, the origin will always

be placed at the bottom left corner of the matrix (cf. Fig. 1) so that our first row will be

the bottom row, and our first column will be (as usual) the leftmost column of a matrix.

This is done in order to keep the resemblance with the “shape” of permutations, in other

words, with their graphs as functions π : [n] → [n].

π = (132)  = = M(132)
1

3

2

Figure 1. Permutation matrix M(132)

Here is a simple example to start with (cf. Fig. 1). The matrix M(132) associated to

π = (132) is a 3×3 matrix with dots in cells (1, 1), (2, 3) and (3, 2). Figure 2 displays the

larger matrices M(52687431), M(3142) and M(2413). In general,

Definition 2. Let π ∈ Sn. The permutation matrix M(π) is the n× n matrix Mn having

a 1 (or a dot) in position (i, π(i)) for 1 ≤ i ≤ n.

As the reader has probably observed by now, a permutation matrix is nothing but an

arrangement of n non-attacking rooks on an n× n board, called a transversal of the board

with elements the “1’s”, or the “dots”.

The original pattern-avoidance Definition 1 is designed in such a way that a permutation

π ∈ Sn contains a subsequence τ ∈ Sk exactly when the matrix M(π) contains M(τ) as a
3
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Figure 2. (52687431) ̸∈ S8(3142), but (52687431) ̸∈ S8(2413)

submatrix. For instance, Figures 2a-b demonstrate that π = (52687431) has a subsequence

(6273) of type (3142) exactly because M(52687431) has a 4 × 4 submatrix formed by the

rows and columns of (6273) and identical to M(3142). On the other hand, it is not hard

to convince yourself that no submatrix identical to M(2413) (cf. Fig. 2c) is contained in

M(52687431), and thus (52687431) avoids the permutation (2431).

We conclude that avoidance of permutations is an equivalent notion to avoidance among

permutations matrices: permutation π avoids τ if and only if matrix M(π) avoids M(τ),

i.e. M(π) does not contain a submatrix identical to M(τ).

3.2. Interpretation of 231-avoidance. We shall fix now one permutation τ and inves-

tigate the set of permutations of length n avoiding τ . This set is denoted by Sn(τ). To

flesh out our understanding of pattern avoidance, let us describe one initial but nevertheless

striking example: that of Sn(231).

In [14] Knuth shows that Sn(231) is precisely the set of stack-sortable permutations (cf.

also [20]). To visualize the situation, imagine a train station with one main track, and one

dead-end side track used for storing temporarily wagons. A cargo train is coming into the

station from the right along the main track (cf. Fig. 3). Its four wagons (starting with the

leading one) are numbered by “4”, “1”, “3” and “2”. The goal is to rearrange the wagons

so that the train leaves the station with wagons numbered in increasing order, “1”, “2”,

“3”, “4”. We can use the side track to store as many wagons as we wish, however, at any

time we can pull out only the most recently stored wagon onto the main track and we must

push it immediately forward to join the sorted out train.

431 2 4 1 3 2

4
3

(0, 0)

(n, n)

Figure 3. Stack-sortability, 231-avoidance, and Lattice paths

The reader can easily spot the solution to sorting out the given train “4132”, and just as

easily realize that this is impossible if the incoming train were labelled “3142” because of its

subsequence (342) of type (231). It turns out that containing the permutation (231) is the
4



only obstruction to sorting out our trains. Thus, the permutations that can be sorted out

in the above way, the so-called stack-sortable permutations, are precisely those that avoid

(231).

Evidently, two different such permutations have different sorting algorithms. Further-

more, the sorting algorithm for each such permutation of length n is unique, encoded by

binary strings of length 2n, where “0” stands for “move into the stack”, while “1” – for

“move out of the stack”. Since we can’t move out of the stack more wagons than what

is currently stored there, these binary strings can be thought of as properly parenthesizes

expressions with “(” and “)” replacing corespondingly “0” and “1”. Such expressions, on

the other hand, are nothing else but lattice walks from the origin (0, 0) to the point (n, n)

that do not cross the diagonal y = x and that are composed only of unit-length steps to the

right or up. For instance, our train (4132) can be encoded as 00100111=”(()(()))”, which

in turn is the lattice path shown in Figure 3b.

But as it is well-known, the Catalan numbers cn also count exactly the same lattice

paths!2 Making a full circle around, we conclude that

(1) |Sn(231)| = cn for all n ≥ 1.

For instance, there are c4 = 14 trains of length 4 which can be sorted out. Equation (1) is

the first elementary, yet non-trivial enumerative result on restricted patterns, which should

have given the reader a flavor of the rich combinatorial possibilities in this field. Even

though enumerating the various sets |Sn(τ)| is a worthy and challenging problem in itself

(and we shall come to it in a later part of the paper), we mainly view it as a vehicle to

solving a much more enticing puzzle.

3.3. Wilf-equivalence. Comparing two different permutations τ and σ in our setting nat-

urally leads to comparing their associated Sn-subsets, Sn(τ) and Sn(σ).

Definition 3. Two permutations τ and σ are Wilf-equivalent, denoted by τ ∼ σ, if they

are equally restrictive on any length permutations, i.e.

|Sn(τ)| = |Sn(σ)| for all n ∈ N.

The classification of permutations up to Wilf-equivalence is the first classic and still far

from resolved question in the field of restricted patterns. To get a feeling for it, let us

investigate the first non-trivial situation, in S3 (for there is nothing interesting to say in S1

or S2).

In Figure 4 we have grouped the six permutations of S3 into two symmetry classes:

{(321), (123)} and {(132), (312), (213), (231)}. It is evident that within each such class

the permutations are Wilf-equivalent; for instance, if you flip the matrix M(321) across

a horizontal axis, you will obtain the matrix M(123); this same flip induces a bijection

Sn(321) ∼= Sn(123), rendering (321) and (123) as Wilf-equivalent. Similarly, flippingM(132)

2The Catalan numbers are given by: cn = 1
n+1

(
2n
n

)
=

∑n
i=1 ci−1cn−i, c0 = c1 = 1.
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∼ ?∼ ∼ ∼ ∼

(123)(321) (132) (312) (213) (231)

Figure 4. Classification of S3 up to Wilf-equivalence

across a horizontal, vertical or diagonal axis of symmetry produces M(312), M(213) and

M(231), and implies (132) ∼ (312) ∼ (213) ∼ (231). In general, acting by the dihedral

group (or the symmetries of the square) on the n×n permutation matrices produces classes

of Wilf-equivalent permutations; the orbits of this action are the above-mentioned symmetry

classes of permutations.

Thus, we have split S3 into two symmetry classes, and the only thing left to resolve is

whether permutations from different classes are Wilf-equivalent. At the behest of Wilf,

a bijection Sn(123) ∼= Sn(132) was suggested by Knuth [14], and shown by Rotem [20],

Richards [19], Simion-Schmidt [21], and West [29]. We do not discuss these proofs here,

for we shall later, that this situation is a specific instance of a much wider phenomenon.

As an exercise, the reader is encouraged to produce one such bijection, or prove that, say,

|Sn(123)| = cn. We conclude that

Theorem 1. S3 consists of a single Wilf-class, and |Sn(τ)| = cn for all τ ∈ S3.

The situation is considerably more complicated already on the level of S4, not to mention

longer permutations. We will return to the classic Wilf-classification in the main part of

the paper.

3.4. Wilf-equivalent pairs. Nothing prevents us from “forbidding” several permutations

at a time. In other words,

Definition 4. For a collection Ω of permutations (not necessarily of the same length)

we denote by Sn(Ω) the set of permutations in Sn avoiding everything in Ω: Sn(Ω) =

∩τ∈ΩSn(τ). If two collections Ω and Υ are equally restrictive on any length permutations,

i.e. |Sn(Ω)| = |Sn(Υ)| for all n, then Ω and Υ are called Wilf-equivalent, which we denote

by Ω ∼ Υ.

Considerable attention in the field has been devoted to studying Wilf-equivalent pairs.

According to a classic result of Erdös and Szekeres [11], the identity permutation Ik =

(1, 2, 3, . . . , k) and its reverse Jk = (k, k − 1, . . . , 2, 1) impose too many conditions on

large enough permutations, and hence cannot be avoided simultaneously; more precisely,

|Sn(Ik, Jl)| = 0 for n > (k − 1)(l − 1).

More than two decades ago, Simion-Schmidt [21] classified pairs in S3 up to Wilf-

equivalence. Figure 5 displays a representative pair for each of the 5 symmetry classes

(pairs are indicated by “+”), and only 2 Wilf-equivalences between these symmetry classes.
6



Thus, for instance, {(132), (231)} ∼ {(132), (213)} ∼ {(123), (132)} accounts for the first

Wilf-class. For each of the resulting 3 Wilf-classes, a number on the side corresponds to

|Sn(τ1, τ2)|, e.g. |Sn((123), (231))| =
(
n
2

)
+ 1. The size 0 for the third Wilf-class is nothing

but the above-mentioned Erdös-Szekeres result.

∼ ∼+ + +

+ +

2n−1

(
n
2

)
+ 1 0 for n ≥ 5

Figure 5. Wilf-classes of pairs in S3

Theorem 2 (Simion-Schmidt). There are 5 symmetry classes of pairs (τ, σ) of permu-

tations of length 3, with representatives3 (132, 231), (132, 213), (123, 132), (123, 231), and

(123, 321). There are 3 Wilf-classes of such pairs: the first three symmetry classes join to

form one Wilf-class, and the last two symmetry classes stay separate to form two more Wilf-

classes. Each Wilf-class produces Sn-subsets of the following sizes: |Sn(132, 231)| = 2n−1

and |Sn(123, 231)| =
(
n
2

)
+ 1 for all n ≥ 1, while |Sn(123, 321)| = 0 for n ≥ 5.

The reader is again encouraged to prove these results, whether by direct enumeration of

the sizes |Sn(τ1, τ2)| of each symmetry class, or by finding explicit bijections between these

symmetry classes.

A vast amount of research has been generated by the study of Wilf-equivalence of pairs.

Not surprisingly, the classification of (4, 4) pairs (i.e. pairs in S4) already demands a variety

of new methods and deeper analysis. What is surprising is that non-trivial Wilf-equivalences

among pairs seem to occur lot more frequently than among singleton of permutations. We

shall see examples of this later, but for now it suffices to say that this phenomenon has not

been yet explained at all.

3.5. Beyond Wilf-equivalence. Even if we manage to classify all permutations up to

Wilf-equivalence, there will still be quite a few questions left to answer. For instance,

if τ ̸∼ σ, then for some n one of the two sets Sn(τ) and Sn(σ) must be smaller, say,

|Sn(τ)| < |Sn(σ)|. This would mean that τ occurs more often as a subpattern of length-n

permutations and hence τ is “harder” to avoid in Sn than σ. Formally,

Definition 5. If |Sn(τ)| ≤ |Sn(σ)| for all n ∈ N, we say that τ is more restrictive than σ,

and denote this by τ ≼ σ.

As usual, let’s examine the initial cases of Wilf-ordering. There is nothing to say for S3,

as everything there is Wilf-equivalent to anything else. To talk about Wilf-ordering in S4,

we must first understand the Wilf-equivalences in S4.

3For convenience, we have dropped the parentheses around each permutations.
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Theorem 3 (Stankova,West). There are 7 symmetry classes in S4, whose representatives

enter in the following Wilf-equivalences: (1234) ∼ (1243) ∼ (2143) ∼ (4123), (4132) ∼
(3142), and (1324) stays separate, for a total of 3 Wilf-classes.

Representatives of each Wilf-class appear in Figure 6a. The Wilf-classification of S4

was completed over several years by West [29] and Stankova [22, 23]. It required several

new methods and is definitely not an easy exercise to offer to the reader for practice. We

shall discuss it in detail in a later section. Meanwhile, let’s see how the 3 Wilf-classes in

S4 measure against each other. In [5, 7], Bóna provided the only known so far result on

complete Wilf-ordering of Sk:

Theorem 4 (Bóna). The three Wilf-classes in S4 are ordered as (1342) ≼ (1234) ≼ (1324):

(2) |Sn(1342)| < |Sn(1234)| < |Sn(1324)| for n ≥ 7.

≼ ≼ ?

Figure 6. Total Wilf-ordering on S4 and S5

For each of the two inequalities, Bóna created essentially a new method containing a

number of beautiful sophisticated ideas, to which a couple of paragraphs here will not

serve justice. More recently, Stankova [25] devised another way of viewing the problem via

decomposable permutations and generalized Bóna’s result to arbitrary lengths.

The point is: even the first non-trivial case of Wilf-ordering generated a great deal of

new research, and is indeed far from trivial. The ultimate success in Wilf-ordering S4 raised

hopes for an old conjecture of West, according to which any two permutations (of same

length) can be ordered, and hence there is total Wilf-ordering on any Sn. Yet, after years

of fruitless search for a proof, a counterexample was found by Stankova already in S5:

S7(53241) < S7(43251) but S13(53241) > S13(43251),

so that these two permutations cannot be Wilf-ordered (cf. Fig. 6b). A number of coun-

terexamples were further traced in S6 and S7 (cf. [24]), and this completely obviated any

hopes for a total Wilf-ordering of a general Sk. What next?

3.6. Stanley-Wilf Limits. Naturally, we look at asymptotic behavior of permutations and

hope for asymptotic ordering of Sn.

Definition 6. For two permutations τ and σ, we say that τ is asymptotically more restrictive

than σ, denoted by τ ≼a σ, if |Sn(τ)| ≤ |Sn(σ)| for all n ≫ 1.
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Again, the results are not plentiful. But interestingly enough, most of them revolve

around the famous Stanley-Wilf conjecture from 1980, which was proven only recently in

2004 by Marcus and Tardos [16].

Theorem 5 (Stanley-Wilf, Marcus-Tardos). For any permutation τ there is a constant cτ so

that |Sn(τ)| ≤ cnτ for all n ≥ 1. Equivalently, for any τ the limit L(τ) = limn→∞
n
√
|Sn(τ)|

exists.

Let’s verify the theorem for any τ ∈ S3 using the properties of Catalan numbers:

|Sn(τ)| = cn =
1

n+ 1

(
2n

n

)
⇒ cn+1

cn
=

4n+ 2

n+ 2
< 4 ⇒ cn < 4n for all n ≥ 1.

Hence, cτ = 4 is one possible Stanley-Wilf constant. That we cannot improve this constant

is evident from a similar calculation:

cn+1

cn
>

4n

n+ 2
⇒ cn >

4n

2n(n+ 1)
⇒ n

√
cn >

4
n
√

2n(n+ 1)

n→∞→ 4.

Therefore, L(τ) = 4 for any τ ∈ S3.

As long as we know the Stanley-Wilf limits in Sn, inequalities among them will certainly

suggest asymptotic ordering on Sn. In this vein, L(In) = (n − 1)2 ≤ L(τ) for any layered

pattern4 τ ∈ Sn is strong evidence that the identity pattern In is more restrictive than all

layered patterns in Sn (cf. Bóna [6, 8] and Regev [18]). But in case these two limits coincide,

even this beautiful result will not guarantee asymptotic ordering between In and τ .

To make matters more challenging, calculating Stanley-Wilf limits in general turns out

to be far from the “straightforward” case of S3. Can you calculate, for instance, L(1324)?

Even though the other two limits in S4 are known: L(1342) = 8 and L(1234) = 9, apart

from the recent lower bound L(1324) > 9.35 [1], finding the exact value of L(1324) is still

an open question. In a later section we will explore more cases of Stanley-Wilf limits, some

methods and ideas created within the proof of Theorem 5, as well as possible generalizations

of Stanley-Wilf limits to paths of Young diagrams.

4. Wilf-Classification of Sn: How Much can We Hope for?

4.1. Permutations of Length 4 Demand New Methods. We discussed earlier that S3

consists of one Wilf-class, and suggested some ways to show it. Theorem 3, on the other

hand, only listed the 7 symmetry classes on S4 and grouped them in 3 Wilf-classes, without

indicating as to how the theorem was proven. It took several years, one Ph.D. thesis (West’s

[29]) and two papers written at the Duluth REU’91-’92 (Stankova’s [22, 23]), to complete

this project.
Let us visualize the situation as in Figure 7. If you take a closer look at the Wilf-

equivalences (2143) ∼ (1243) ∼ (1234) in the 3rd Wilf class, you will notice that represen-

tatives of the symmetry classes are obtained from one another either by switching the two

4A layered pattern is composed of increasing blocks of decreasing subpatterns, e.g. (3217654) is layered.

9



Stankova∼
Duluth’91

Stankova∼
Duluth’92

West∼
MIT’91

West∼
MIT’91

(1324) (4132) (3142)

(2143) (1243) (1234) (4123)

Figure 7. Classification of S4 up to Wilf-equivalence

smallest elements 1 and 2, which “happen” to be in the beginning, or by switching the two

largest elements 3 and 4, which are positioned at the end of the permutations. This is no

coincidence. After applying appropriate symmetries to the permutation matrices, both of

these Wilf-equivalences become special cases of the following theorem:

Theorem 6 (Babson-West’00). If the largest two elements of a permutation lie at the end

of it, switching them preserves the Wilf-equivalency class:

(a1, a2, . . . , an−2, n− 1, n) ∼ (a1, a2, . . . , an−2, n, n− 1)

for any n ≥ 2 and any permutation (a1, a2, . . . , an−2) ∈ Sn−2.

Even though West conjectured the statement and proved convincingly a number of cases

already in 1991 [27], it was a while before new tools for studying restricted patterns became

available and the complete and rigorous proof of Theorem 6 was published in 2000 [3].

Instead, let us backtrack a little and concentrate on the available methods at the time

when the classification of S4 was completed.

4.2. Generating Trees. The method of generating trees was introduced in 1978 by Chung,

Graham, Hoggatt, and Kleiman [10] in relation to Baxter permutations and has been a

common tool for studying permutations ever since. The idea of using this method specifically

in the context of restricted patterns was taken up by West in the early 1990’s.

Definition 7. The generating tree T (τ) of a permutation τ is defined as follows:

• the nodes on level n are the permutations of length n avoiding τ , i.e. all π ∈ Sn(τ);

• the children of a node π on level n are obtained by inserting n + 1 in appropriate

places in π so as to still avoid τ on level n+ 1.

Figure 8a displays the tree T (123); note that the shown 4 levels of the trees contain

correspondingly 1, 2, 5 and 14 nodes, the Catalan numbers. On level 4 we have named only

the 4 children of the most “prolific” node of length 3, (321).
10



1

21 12

321 213 231 312 132

4321

3214 3241

3421

⟨2⟩

⟨3⟩ ⟨2⟩

⟨4⟩ ⟨3⟩ ⟨2⟩ ⟨3⟩ ⟨2⟩

⟨5⟩ ⟨4⟩ ⟨3⟩ ⟨2⟩

Figure 8. The tree T (123) and its labeling

If two trees are isomorphic, then in particular their corresponding levels have the same

number of nodes, which means that the two restricted permutations are Wilf-equivalent:

T (τ) ∼= T (σ) ⇒ τ ∼ σ. Isomorphisms between generating trees are usually established by

first labeling the nodes of each tree, and then constructing a 1-1 correspondence between

these labelings. The label of node, hence, must contain all information about the subtree

generated by this node.

It is easy to see how we should label the tree T (123). If π = (a1, a2, . . . , an) ∈ Sn(123) has

initial decreasing subsequence (a1, a2, . . . , ak), then n + 1 can be inserted in π everywhere

in the first k+1 slots, but not afterwards. Thus, the terms ak+1, ak+2, . . . , an are irrelevant

from now on and can be erased because π will generate the same subtree of T (123) as the

decreasing sequence Jk = (k, k − 1, . . . , 1). In conclusion, we could label π by the length k

of its initial decreasing subsequence, or equivalently, by the number of its children, k+1. In

Figure 8b we have opted for the second approach. Note that the k+1 children of π = ⟨k+1⟩
will have labels ⟨2⟩, ⟨3⟩, . . . , ⟨k + 2⟩; thus, the label of a node completely determines the

labels of its children.

The reader is invited to try to label T (132) in a similar fashion and establish the iso-

morphism T (123) ∼= T (132), which confirms once again that (123) ∼ (132) in S3. From the

viewpoint of S4 however, we are interested in potential trees isomorphisms for the permu-

tations claimed to be Wilf-equivalent in Figure 7. West found two such isomorphisms in S4

[28], and managed to extend one of them to a wider class of permutations [27].

Theorem 7 (West’91). T (2143) ∼= T (1243) ∼= T (1234), and the isomorphisms are unique.

More generally, switching the largest two elements of the identity permutation In creates

two isomorphic trees:

T (1, 2, . . . , n− 2, n− 1, n︸ ︷︷ ︸
In

) ∼= T (1, 2, . . . , n− 2︸ ︷︷ ︸
In−2

, n, n− 1).

As Theorem 6 suggest, the ensuing Wilf-equivalences in S4, namely, (2143) ∼ (1243) ∼
(1234) are part of a much wider class of Wilf-equivalences. The used labelings of the trees

in the proof of Theorem 7 are easy to follow and reasonable to come up with.

But now let’s take a look at the first proposed Wilf-equivalence in Figure 7: (4132)
?∼

(3142) in S4. It says that the least symmetric pattern in S4, the quadrilateral (4132), and
11



the most symmetric pattern in S4, the square (3142), are equally restrictive?! Not only

that, but West conjectured further that their permutation trees were isomorphic, and the

present author proved it in [22].

Theorem 8 (Stankova’91). T (4132) ∼= T (3142).

The proof is based on a detailed study of the “parent-children relationships” in each of the

two trees, and on creating appropriate labelings to capture these relationships. To give you

a sense of the involved complications, here is the labeling for T (4132). If a node τ ∈ T (4132)

has k children, its label will have k entries, (i1, i2, . . . , ik); then for s = 1, 2, . . . , k, its sth

child will have label (1, 1, . . . , 1︸ ︷︷ ︸
is

, îs, îs+1, . . . , îk), where for j = s, s+ 1, . . . , k:

îj =


ij if ij ≤ j − s,

ij + 1 if j − s < ij ≤ is + j − s,

is + 1 + j − s if is + j − s < ij .

T (3142) has a similarly involved labeling. As one can imagine, to come up with the two

labelings, to show that they work and that they are in 1-1 correspondence, takes some effort.

But here is the most striking fact: the resulting Wilf-equivalence (4132) ∼ (3142) does

not fit in any larger class of equivalences. It is the only sporadic case of Wilf-equivalences

known so far, and there is no known proof of it other than the above tree isomorphism.

Question 1. Is there a deeper reason, beyond the tree isomorphism, for why the two ap-

parently “extreme” patterns, 4132 and 3142, should be equally restrictive?

4.3. Embeddings and isomorphic subtrees. We can now take a look at the last pro-

posed Wilf-equivalence in S4: (1234)
?∼ (4123). If we flip (4123) across a horizontal axis,

we obtain (1234)
?∼ (1432), where the last three and largest elements (234) are flipped to

(432). This looks awfully like Theorem 7, and indeed it is true, but its proof does not come

up until much later (cf. [3, 4]).

On the other hand, a survey of the trees T (1234) and T (4123), or any T (σ) and T (τ)

where σ and τ are in the corresponding symmetry classes, does not yield possible isomor-

phisms. One can be even more inventive and use other definitions for generating trees, e.g.

instead of adding n + 1 to nodes π of length n, first increase the largest entry n of π by

1 and then add n in appropriate places. Unfortunately, these tree variations also do not

suggest any potential isomorphisms.

The classic method of generating trees, therefore, needed to be adjusted here for the

purposes of the intended Wilf-equivalence:

Theorem 9 (Stankova’92). |Sn(1234)| = |Sn(4123)|.

The proof of Theorem 9 in [23] can be roughly described by embedding infinitely many

times the well-known subtree T (123) inside the trees T (1234) and T (4123). Not surprisingly,

this is done with the help of labellings:
12



• the standard labeling for T (123) (as discussed earlier), assigning to every node α

the length k of its initial decreasing subsequence;

• analogous labeling for T (1234) (used already by West in [27]), assigning to every

node β a pair of integers ⟨x, y⟩, where x is the length of the initial decreasing

subsequence of β and y is the number of children of β;

• a new labeling for T (4123) (created for this purpose in [23]).

The decreasing subsequence structure of a permutation π is

the sequence of lengths of the maximal consecutive subse-

quences in π. If γ ∈ T (4123) contains a subsequence of

type (123), n+ 1 cannot be added before it in γ, so we may

disregard all numbers before such (123)-subsequences in γ,

including the first number of the subsequence itself. If the

resulting sequence is γ′, and the permutation of type γ′ is

γ′′, the label of γ is the decreasing subsequence structure of

γ′′. For example, γ = (64175328) 7→ γ′ = (7532|8) 7→ γ′′ =

(4321|5), and γ’s label is ⟨4, 1⟩.

The process of obtaining γ′′ from γ in T (4123) is called reduction of γ to γ′′. The above

is a good labeling because two nodes in T (4123) have the same label if and only if they are

isomorphic in T (4123), in other words, they generate isomorphic subtrees and hence one

can switch them without changing the overall tree. (This idea is reflected in an artistic

way in the above picture.) Note that, in effect, the reduction replaces γ ∈ T (4123) with an

isomorphic node γ′′ that avoids (123) and hence occurs in T (123).

Analogous reduction processes are defined for the nodes of T (1234) – the cut is done

at the end of the permutations – and no reduction is necessary for T (123); and analogous

statements about isomorphism of nodes in T (123) and in T (1234) are established, involving

(naturally) the decreasing sequence structure. For example, if two permutations in T (123)

have the same decreasing sequence structures, they are isomorphic in T (123) (because they

have the same length of initial decreasing subsequences, and hence same labels). Thus,

(132) ∼= (231) = ⟨1⟩ and (213) ∼= (312) = ⟨2⟩ in T (123).5

The last simple observation in T (123) underpins the rest of the proof. If the numbers

k − 1, k and k + 1 are not in a monotone subsequence of α ∈ T (123), we allow switching

the two occurring first and last in α, and denote this transformation by α → β. For

instance, (132) → (231) and (3214) → (4213) → (4312). It turns out that the two switching

operations are well-defined on T (123), and if α → β in T (123), then not only α and β are

isomorphic nodes in T (123), but also in T (1234) and T (4123).

The orbits of the switching operations (taken together) are equivalence classes of isomor-

phic nodes on every level of T (123). A partial ordering within each equivalence class (that

5(321) = ⟨3⟩ is not isomorphic to any other node in S3(123), and (123) itself is missing from T (123).

13



carries over to the larger trees T (1234) and T (4123)), is created by orienting the switches

above: a positive switch to α →+ β in T (123) moves a larger element in front of a smaller

one, e.g. (3214) →+ (4213) →+ (4312), while (231) →− (132) is a negative switch.

Let a backtrack be a number k that comes before k + 1 in a permutation α. In T (123),

the set of maximal elements of length n with s backtracks is denoted by Cn,s; note that

s ≤ n/2. For example, the backtracks in the non-maximal α = (543612) are four: 5, 4, 3

and 1, but maximizing α to β = (643512) yields only three backtracks: 4, 3 and 1.

The sets Cn,s are the key to proving that 1234 ∼ 4123 and to enumerating Sn(1234).

Amazingly enough, we can calculate precisely |Cn,s| and represent the whole set |Sn(123)|
in a nice combinatorial pattern, determined by the Cn,s–sets.

6 To this end, we extend the

sequence of Catalan numbers to a triangular Catalan table: its entries are the numbers cn,s

with with cn−1,s + cn−1,s−1 = cn,s, where the n-axis is the usual horizontal x–axis, while

the s–axis makes a 135◦–angle with the n-axis (compare Fig. 9 with Fig. 3b). In particular,

c2n,n = cn and s ≤ n/2.

n

s

c0,0 c1,0 c2,0 c3,0 c4,0 c5,0 c6,0 c7,0 c8,0 c9,0 c10,0

c10,5

c2,1 c3,1 c4,1 c5,1 c6,1 c7,1 c8,1 c9,1 c10,1

c4,2 c5,2 c6,2 c7,2 c8,2 c9,2 c10,2

c6,3 c7,3 c8,3 c9,3 c10,3

c8,4 c9,4 c10,4

1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9

2 5 9 14 20 27 35

5 14 28 48 75

14 42 90

42

Figure 9. Catalan table

Lemma 1. In Sn(123), |Cn,s| = cn,s =
(
n
s

)
−

(
n

s−1

)
for s = 0, 1, ..., [n/2]. Further, place all

maximal elements in a row, reorder them within the sets Cn,s according to their backtrack

number s, and underneath each maximal element list its equivalence class in a column.

The resulting configuration will be a disjoint union of squares, one for each Cn,s–set. In

particular, the size of an equivalence class with maximal element of backtrack number s

equals |Cn,s|, and the total number of elements in Sn(123) are cn =
∑[n/2]

s=0 c2n,s.

Figure 9 points to two examples: c4=14=12+32+22 and c5=42=12+42+52. To get

the trees T (1234) and T (4123) into the picture, we investigate how their nodes on level n

recursively relate to nodes on level n+ 1.

We say that a permutation in T (1234) or T (4123) is full or irreducible if it avoids (123),

i.e. no reduction is necessary on it. On the other hand, a reduced permutation α′′ in T (1234)

or T (4123) is obtained from a permutation α which does indeed need reduction; α is called

reducible. Note that a full permutation on level n (of whichever tree) has length n, while a

reduced permutation has length k smaller than its level n.

6We changed the original notation in [23] from Bn,s and bn,s to Cn,s and cn,s to reflect the fact that we

are dealing with the Catalan numbers.
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Lemma 2. Consider the set of irreducible permutations Cn,s in Sn(1234) (or Sn(4123)).

The set of all children of Cn,s, C
′
n,s, after possible reduction and maximization (in T (123)),

can be partitioned as follows:

• the irreducible children of Cn,s, after possible maximization, form the disjoint union

Cn+1,s ⊔ Cn+1,s+1;

• the reducible children of Cn,s, C
r
n,s, can be thought of as the disjoint union of Cn,s

and all reducible children of Cn−1,s and of Cn−1,s−1.

Lemma 2 partitions all children C′
n,s (for s ≤ ⌊n/2⌋) as follows:

C′
n,s

∼=
(
Cn+1,s ⊔ Cn+1,s+1

)
⊔ Cr

n,s,

Cr
n,s

s>0∼= Cn,s ⊔
(
Cr
n−1,s ⊔ Cr

n−1,s−1.
)

Note that Cr
n,0 = ∅ for s = 0 since Cn,0 = {Jn = (n, n − 1, . . . , 1)} has only irreducible

children (n+ 1 in number, to be exact). Further, Cn,s = Cr
n,s = ∅ when s > ⌊n/2⌋.

To finish off the proof that |Sn(1234)| = |Sn(4123)|, we reduce and maximize all of the

permutations in both trees, partition them canonically into Ck,l–sets and compare. Let us

see how this works on level n = 3. In the case of (1234) we have S3(1234) = S3, only one

permutation requires reduction: (12|3) 7→ (12), and two permutations require maximizing:

(132) →+ (231) and (213) →+ (312). The partitioning is as follows:

(3) S3(1234) =
231 132 321 12

132 213
= 2C3,1 ⊔ C3,0 ⊔ C2,1.

The coefficient 2 in front of C3,1 signifies that two (disjoint) copies of the set appear in the

partition. The only difference for S3(4123) is in the unique reduction (1|23) 7→ (23) 7→ (12),

which leads anyways to an identical partition of S3(4123). Applying Lemma 2 to each term

in the above decomposition yields:

(4) S4(1234) ∼= 2C4,2 ⊔ 3C4,1 ⊔ C4,0 ⊔ 3C3,1 ⊔ 3C2,1
∼= S4(4123).

Applying Lemma 2 once again, the reader can verify that:

S5(1234) ∼= 5C5,2 ⊔ 4C5,1 ⊔ C5,0 ⊔ 5C4,2 ⊔ 6C4,1 ⊔ 11C3,1 ⊔ 11C2,1
∼= S5(4123).

For completeness, note that S1(1234) = S1(4123) = {(1)} = C1,0, and S2(1234) = S2(4123) =

{(12), (21)} = C2,1⊔C2,0, and check that Lemma 2 recursively transforms the decompositions

from level 1 to level 2 to level 3.

By induction, each level of the two trees T (1234) and T (4123) can be partitioned into

the same sets Ck,l, hence |Sn(1234)| = |Sn(4123)| for all n. �

An outline of the above discussion and a proof was included in [23], but the calculations

and detailed examples are done here for the first time. Meanwhile, the Wilf–classification

of S4 is completed: three distinct Wilf-classes have emerged, with representatives (1324),

(1234) and (4132).
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4.4. Enumerations on trees. Ever since the initial calculation |Sn(τ)| = cn for all τ ∈ S3,

the question of enumerating Sn(τ)–sets for longer permutations τ has fascinated reseachers;

yet, it has been resolved only in . . . 2 cases in S4. In [?] Ira Gessel uses techniques outside

of the scope of this article to enumerate Sn(1234), and later to reduce his formula to

(5) Sn(1234) =
1

(n+ 1)2(n+ 2)

n∑
k=0

(
2k

k

)(
n+ 1

k + 1

)(
n+ 2

k + 1

)
·

As Bóna remarks in his book [7, ?], even though “all terms are non-negative, there is

still a division, suggesting that a direct combinatorial proof is probably difficult to find.”

However, our previous detailed analysis of T (1234) does yield an explicit recursive algorithm

for moving from Sn(1234) to Sn+1(1234), and hence a possible direct combinatorial route

of proving formula (5).

To enumerate |Sn(1234)|, we need to find the precise canonical decomposition of Sn(1234)

into Ck,l-sets. So, let

Sn(1234) ∼=
⊔
(k,l)

xnk,lCk,l,

where xnk,l stands for the number of copies of Ck,l appearing in the decomposition of

Sn(1234), k ≤ n and l ≤ k/2. For easy visualization, Figure 10 displays all cases for

n = 1, 2, . . . , 7, the first five of which were calculated earlier. The coefficients xnk,l have been

placed in the positions of the generalized Catalan numbers ck,l:

1

225 225 127 50 15 6

98 77 35 14

21 14

n = 7

1

47 47 26 10 5

21 16 9

5

n = 6

1

11 11 6 4

n = 5

5 5

1

3 3 3

2

n = 4

1

1 2

n = 3

1

1

n = 2

1

n = 1

Figure 10. Canonical decomposition of Sn(1234) for n = 1, 2, . . . , 7

Let f(n, s), f i(n, s) and f r(n, s) be the number of all, irreducible and reducible children

of Cn,s, respectively. From Lemma 2, f(n, s) = f i(n, s) + f r(n, s), and f i(n, s) = cn+1,s +

cn+1,s+1 = cn+2,s+1, so we can eliminate f i(n, s):
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f(n, s) = cn+2,s+1 + f r(n, s)

f r(n, s) = cn,s + f r(n− 1, s) + f r(n− 1, s− 1)

with initial conditions f(n, s) = f r(n, s) = 0 for s > ⌊n/2⌋ and f r(n, 0) = 0. One can

further eliminate all f r(k, l) by plugging the first formula into the second one, paying

special attention to the boundary cases of k = 2l and l = 0:

(6) f(n, s) = f(n− 1, s) + f(n− 1, s− 1) + cn,s.

From here, one can show by induction an unexpected simplification: the total number of

children of each set Cn,s is given by

(7) |C′
n,s| = f(n, s) = (n+ 1)cn,s.

One can use this formula for an alternative way of calculating |Sn+1(1234)|, knowing

only the decomposition of Sn(1234). For example, from the decomposition S3(1234) ∼=
2C3,1 ⊔ C3,0 ⊔ C2,1 in (3):

|S4(1234)| = 2f(3, 1) + f(3, 0) + f(2, 1) = 2 · 4c3,1 + 4c3,0 + 3c2,1 = 23.

This calculation matches what we would obtain directly from the decomposition of S4(1234)

in (4):

|S4(1234)| = 2c4,2 + 3c4,1 + c4,0 + 3c3,1 + 3c2,1 = 23.

Of course, we know that 23 is the correct answer, as there is only 1 in 24 permutations of

length 4 which doesn’t avoid (1234), namely, (1234) itself. In general,

(8)
∑
(k,l)

xn+1
k,l ck,l = |Sn+1(1234)| = |S′

n(1234)| =
∑
(k,l)

(k + 1)xnk,lck,l.

Unfortunately, this type of reasoning does not carry us very far, since we still need to know

the decomposition of the previous set Sn(1234). We can determine, though, the precise

decomposition of the set C′
k,l of children of Ck,l.

Definition 8. Let (k, l) and (p, q) be two lattice points in the Catalan triangle. We say that

(p, q) ≤ (k, l) if (p, q) is situated southwest from (k, l) in the usual Cartesian sense (possibly

coinciding with (k, l)); i.e. if we draw a vertical line down from (k, l) and a horizontal line

to the left from (k, l), (p, q) lies in the resulting right trapezoid. In such a case, we denote

the number of Catalan paths from (p, q) to (k, l) (consisting of unit segments to the right

or up) by P k,l
p,q .

Lemma 3. For l = 0, C′
k,0

∼= Ck+1,0 ⊔ Ck+1,1. For l > 0:

(9) C′
k,l

∼= Ck+1,l ⊔ Ck+1,l+1

⊔
0<q,(p,q)≤(k,l)

P k,l
p,q · Cp,q.
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The distinction between the cases l > 0 and l = 0 is the reason for the zero coefficients xnk,0
for k = 1, 2, . . . n − 1 (cf. Fig. 10). The disjoint union over (p, q) in (9) can be interpreted

combinatorially as the Catalan paths from (0, 0) to (k, l), counted once for each of the points

(p, q) along them with q > 0, i.e. each counted exactly k times. The fact that we don’t

count the points (p, 0) along these paths is compensated “perfectly” by the two initial extra

components Ck+1,l ⊔ Ck+1,l+1, so that in summary,

Lemma 4. The children of Ck,l are in 1–1 correspondence with pairs (P, (p, q)) of Catalan

paths P from (0, 0) to (k, l) and a point (p, q) on P; that is, each path is counted exactly

k + 1 times. Consequently, we again obtain that f(k, l) = (k + 1)ck,l.

As an example, let’s decompose the set of children of C5,2:

C′
5,2

∼= C6,2 ∪ C6,3 ∪ C5,2 ∪ C4,2 ∪ 2C3,1 ∪ 2C2,1.

The coefficients 2 in front of C3,1 and C2,1 represent the two possible paths from (3, 1) to

(5, 2), and from (2, 1) to (5, 2). Taking moduli everywhere, we obtain

f(5, 2) = c6,2 + c6,3 + c5,2 + c4,2 + 2c3,1 + 2c2,1 = 30 = 6 · c5,2.

Thus, starting with the decomposition Sn(1234) ∼=
⊔
xnk,lCk,l, one can apply Lemma 3 to

each component Ck,l to compute the decomposition Sn+1(1234) =
⊔

xn+1
k,l Ck,l, and then

finally to compute the size |Sn+1(1234)| =
∑

xn+1
k,l ck,l.

However, the inductive process Sn(1234) → Sn+1(1234) is far from trivial from a com-

putational point of view. One can attempt different grouping and counting strategies, in

order to avoid finding the exact decomposition of Sn+1(1234), but still be able to compute

the size |Sn+1(1234)|. The fact that we managed to compute f(n, s) before we knew the

exact decomposition of C′
k,l is an indication that the above may be possible. For instance,

we can group the components Ck,l of Sn(1234) according to the diagonal they lie on (i.e. k

is fixed), and calculate the contribution
∑

l x
n
k,lck,l of this diagonal towards the total size

|Sn(1234)|.
The last diagonal k = n is fairly easy to determine: the coefficients there coincide with

the generalized Catalan numbers placed in these positions, e.g. for n = 6, the numbers 1,

5, 9 and 5 appear in the same positions in Figure 10 and in Figure 9, and their contribution

towards |S6(1234)| is 12 + 52 + 92 + 52 = 132 = c6.

Lemma 5. In Sn(1234), x
n
n,l = cn,l for all l, so that the contribution of the nth–diagonal

towards |Sn(1234)| is
n∑

l=0

xnn,l|Cn,l| =
n∑

l=0

c2n,l = c2n,n = cn.

The individual coeffiecients xn−1
k,l on the (n − 1)st–diagonal are not so obvious but their

total contribution towards |Sn(1234)| can be found. For instance, observe for n = 6 that
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x65,2 · c5,2 + x65,1 · c5,1 = 16 · 5 + 10 · 4 = 120 = 6 · 42− 132 = 6 · c5 − c6. In fact, equating the

two ways of calculating |Sn+1(1234)| in (8) and appropriate cancellation leads to

Lemma 6. The contribution of the (n− 1)st–diagonal towards |Sn(1234)| is n · cn−1 − cn.

A natural question arises:

Question 2. Is the contribution of the (n − k)th–diagonal towards |Sn(1234)| expressible
as a linear combination of cn, cn−1, . . . , c2, c1 whose coefficients are some convenient

functions of n and k?

If the answer is yes, then combining all diagonals’ contributions yields

|Sn(1234)| = xncn + xn−1cn−1 + · · ·+ x1c1

for some convenient xk. Using the cn’s as a basis of such a linear combination is not surpris-

ing. Gessel’s formula (5) already does this: just extract all ck = 1
k+1

(
2k
k

)
. For instance, the

coefficients of cn and cn−1 are 1/(n+ 1) and n/2, respectively. The interesting question is

how to combinatorially find these coefficients using the above analysis of Sn(1234). To this

end, we need a combinatorial description of all components Ck,l in Sn(1234)’s decomposition,

along with their multiplicities xnk,l.

Definition 9. Fix some integers n and k ∈ [0, n]. Consider any path P in the Catalan

lattice, with a choice of (not necessarily distinct) points {P0, P1, . . . , Pk−1} on it and above

the 0th row, so that P consists of the following two parts:

• The first part P1 starts at (0, 0), contains all points Pj , ends at some point Pk on

the (n−k)th–diagonal, and consists only of unit segments to the right or up, except

for those unit segments to the left or down that connect two consecutive points Pj

and Pj+1.

• The second part P2 picks up where P1 ended on (n − k)th–diagonal and ends at

(2k, k), and consists only of unit segments to the right or up.

If Pj does not belong to the (n− j)th–diagonal for j ≤ k− 1, we say that the (k+ 1)–tuple

(P, P0, P1, . . . , Pk−1) is a full path of order k, while the (k + 1)–tuple (P1, P0, P1, . . . , Pk−1)

is a partial path of order k.

The paths of order 0 are simply all Catalan paths from (0, 0) to (2n, n), cn in number

For the paths (P, P0) of order 1, we know that P0 cannot be on the nth–diagonal while P1

must be on the (n − 1)st–diagonal; hence, P0 ≤ P1 and these paths are the usual Catalan

paths from (0, 0) to (2n−2, n−1) with an extra choice of a point P0 before or on (n−1)st–

diagonal, but not on the 0th–row. A quick count similar to what we had earlier, shows that

these paths are exactly ncn−1 − cn in number. The paths of order (n− k) for k ≥ 2 involve

the occasional unit backtrack moves to the left or down from Pj to Pj+1, and their counting

is considerably more complex.
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Proposition 1. The coefficient xnk,l counts the number of partial paths P1 of order k which

end on Pk = (k, l), while the term xnk,lCk,l corresponds to the full paths P of order k pass-

ing through Pk = (k, l). Consequently, the contribution of the (n − k)th–diagonal towards

|Sn(1234)| is the number of full paths of order k, while |Sn(1234)| itself is the number of

full paths of any order k = 0, 1, . . . , n− 1.

The only other exact formula for a pattern longer than 3 is for (4132) by Bóna in [7]:

Sn(4132) = (−1)n−1 7n
2 − 3n− 2

2
+

n∑
i=2

(−1)n−i2i+1 (2i− 4)!

i!(i− 2)!

(
n− i+ 2

2

)
·

Question 3. Could the labeling of T (4132) or of T (3142) be used to directly enumerate

Sn(4132)?

Question 4. Could the methods in [7] or in [25] be used to enumerate Sn(1324)? No

formula is known about this sequence.

4.5. Shape-Wilf Equivalence. Now let’s move to Wilf-classification of S5 and beyond.

There are no sporadic cases, and all Wilf-equivalencies fits nicely into Babson-West’s The-

orem about flipping the last k largest elements... However, the proof of the Theorem itself

requires the new stronger notion of shape–Wilf–equivalent, which utilizes Young diagrams

instead of square matrices and replaces the classic Wilf-equivalence.

4.6. S8 and beyond: are computer capabilities the only obstacle? A month-long

calculations yielded no new Wilf-equivalences in S8.

Question 5. How long will it take to convince ourselves that S9 and beyond are already

classified up to Wilf-equivalence? Are we dependent here only on the speed of computers,

or is there an underlying reason for the apparent lack of further new Wilf-equivalences on

longer patterns?

Conclusion: of all questions on restricted patterns, the classification up toWilf-equivalence

still carries the flag of the hardest question, whose answer is not likely to come up soon.

5. On the Stanley-Wilf Limits

That the existence of the limit L(τ) implies the exponential bound cnτ for |Sn(τ)| is an

obvious exercise in limits. However, the opposite implication is not immediate, and it was

first published by Arratia [2]. We present its proof here for the benefit of the reader, as it

demonstrates how properties of restricted patterns imply the (roughly) exponential growth

of |Sn(τ)|, and the congergence of n
√

|Sn(τ)|.

Lemma 7. For any pattern τ and any m,n ≥ 1, |Sm(τ)| · |Sn(τ)| ≤ |Sm+n(τ)|.
Proof. We construct an injective map Sm(τ)×Sn(τ) ↪→ Sm+n(τ) by creating an element γ ∈
Sn+m(τ) from permutations α ∈ Sm(τ) and β ∈ Sn(τ). To this end, place the permutation

20



matrices M(α) and M(β) along the diagonal of a larger empty (n+m)× (n+m) matrix,

to arrive at a permutation matrix M(γ). The permutation γ itself is in effect obtained

by adding n to each entry of α and then concatinating the result with β. For instance, if

τ = (4213), α = (231) and β = (2134), then γ = (6752134) (cf. Fig 11a). Unfortunately,

γ ̸∈ S7(τ), as γ contains the subsequence (5213) ≈ τ .

 τ= τ=

α

β

α

β

Figure 11. (α, β) ∈ Sn(τ)× Sn(τ) ↪→ Sm+n(τ)

There is an easy fix for this. From the very beginning we can assume that the smallest

element of τ preceeds the largest one: if not, simply flip M(γ) across a vertical axis, and

along with it, the matrices corresponding to anything in Sm(τ), Sn(τ) and Sn+m(τ). As we

have seen before, this operation does not change the cardinalities of the involved sets, but

simply replaces τ by another permutation in its symmetry class.

In our example, we will have instead τ = (3124), α = (132), β = (4312), and the newly

created γ = (5764312) will indeed avoid τ (cf. Fig 11b). In general, suppose that γ contains

a subsequence δ ≈ τ , i.e. M(γ) contains the submatrix M(δ) ≈ M(τ). Since M(γ) is made

of two pieces M(α) and M(β), each of which avoids M(τ), this can happen only if M(δ)

involves elements from both M(α) and M(β). But since all of M(α) comes before and is

higher than all of M(β), this means that the largest element A and smallest element B of

M(δ) must come from M(α) and M(β), respectively. In other words, A comes before B in

δ ≈ τ , thereby contradicting our assumption about τ in the previous paragraph.

Thus, γ ∈ Sn+m(τ), and our construction indeed induces an injective map Sm(τ) ×
Sn(τ) ↪→ Sm+n(τ). �

Such maps between pattern-avoiding sets, and especially the “concatination” of the two

permutation matrices M(α) and M(β), are typical constructions in the field of restricted

patterns. Now, one more ingredient is necessary to imply the existence of the Stanley-Wilf

limit L(τ). Recall

Lemma 8 (Fekete). If {an} is a superadditive sequence, i.e. an + am ≤ an+m for all

n,m ≥ 1, then lim
n→∞

an
n

exists and equals sup
an
n
. (The limit may be +∞.)

Unless τ=(1) and clearly L(τ) = 0, all |Sn(τ)| > 0 so that we can apply Fekete’s lemma

(cf. [26]) to the superadditive sequence an = ln |Sn(τ)| to derive that lim
n→∞

ln n
√
|Sn(τ)|

exists. Since n
√

|Sn(τ)| is bounded above by the constant cτ , this limit is finite. We conclude

that L(τ) = sup n
√

|Sn(τ)| ≤ cτ , thereby completing Arratia’s equivalence argument.
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The proof of the Stanley-Wilf conjecture is a different matter altogether. In short, one

needs to define first a generalization of permutation matrices, the so-called 0 − 1 matrices

whose entries are simply 0’s and 1’s without any further conditions. Containment of a 0−1

matrix A in a 0 − 1 matrix M is given by a submatrix B of M such that B has the same

size as A, and B has 1’s at least in the cells where A has 1’s. A conjecture of Füredi-Hajnal

proven by Marcus and Tardos in [16] sounds very similar to Stanley-Wilf conjecture:

Theorem 10 (Marcus-Tardos). If A is a permutation matrix, let f(n,A) be the maximum

number of 1’s that can serve as entries of an A-avoiding 0 − 1 matrix M of size n × n.

Then f(n,A) is bounded above by an exponential function, i.e. there is some constant cA

such that f(n,A) ≤ cnA for all n ≥ 1.

Question: Is Klazar’s use of bipartite containments in any relation to Jelinek’s construc-

tion, and hence to shape-Wilf equivalences?
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[6] M. Bóna, The Solution of a Conjecture of Wilf and Stanley for all layered patterns, J. Combin. Theory,

Series A, 85 (1999) 96-104.
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