Generating functions.

Definition. Let a_{o}, a_{1}, \ldots (denoted also by $\left.\left(a_{n}\right)_{n=0}^{\infty}\right)$ be a sequence of interest. The formal power series

$$
G(x):=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is called the ordinary generating function for the sequence $\left(a_{n}\right)$.
The coefficient of x^{n} in $G(x)$ is a_{n} :

$$
a_{n}=\left[x^{n}\right] G(x)
$$

Example 1. How many ways are there to split a dollar bill into pennies, nickels, dimes, and quarters?
Example 2. Let b_{n} denote the number of representations of a positive integer n as a sum of numbers 1,2 , 3 , and 4 , where two sums with different orders of summands are considered different. What is $\sum_{n=0}^{\infty} b_{n} x^{n}$?

Example 3. Show that the generating function for the Fibonacci sequence $\left(F_{n}\right)$ is

$$
G(x)=\sum_{n=1}^{\infty} F_{n} x^{n}=\frac{x}{1-x-x^{2}}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-a x}-\frac{1}{1-b x}\right)
$$

where $a:=(1+\sqrt{5}) / 2, b:=(1-\sqrt{5}) / 2$. Thus $F_{n}=\left(a^{n}-b^{n}\right) / \sqrt{5}$.
Example 4. The number of partitions of $[n]:=\{1,2, \ldots, n\}$ into k nonempty blocks is the Stirling number of the second kind denoted by $\left\{\begin{array}{c}n \\ k\end{array}\right\}$. Find the generating function for $\left\{\begin{array}{l}n \\ k\end{array}\right\}$.

Example 5. The number of permutations of $[n]$ with k cycles is the Stirling number of the first kind denoted by $\left[\begin{array}{l}n \\ k\end{array}\right]$. Find the generating function for $\left[\begin{array}{l}n \\ k\end{array}\right]$.

Definition. Let S be a set and let w be a function from S to \mathbb{Z}_{+}. We refer to $w(\sigma)$ as the weight of σ. The generating function for S with respect to w is defined by

$$
G_{S}(x):=\sum_{\sigma \in S} x^{w(\sigma)}
$$

Example 6. Let S be the set of permutations of [3] and let w be the function counting the number of fixed points. Find G_{S}.

Sum Rule. If $S=A \cup B$ and $A \cap B=\emptyset$, then

$$
G_{s}(x)=G_{A}(x)+G_{B}(x) .
$$

Product Rule. If $S=A \times B$ and if, for all $\sigma=(a, b)$, the weight $w(\sigma)=w(a)+w(b)$, then

$$
G_{s}(x)=G_{A}(x) \cdot G_{B}(x)
$$

Example 7. Let S be the set of all k-tuples $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ where the a_{j} 's are positive integers and the weight of the element $\sigma=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in S is $\sum_{j=1}^{k} a_{j}$. Find the corresponding generating function G_{S}. What does the coefficient $\left[x^{n}\right] G_{S}(x)$ count? Use the binomial theorem

$$
(1-x)^{-a}=\sum_{n=0}^{\infty}\binom{n+a-1}{n} x^{n}
$$

to derive the formula

$$
\left[x^{n}\right] G_{S}(x)=\binom{n-1}{k-1}
$$

Definition. A partition of a positive integer n is a nonincreasing sequence of positive integers whose sum is n. Thus a partition

$$
\lambda:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)
$$

satisfies $n=\lambda_{1}+\cdots+\lambda_{m}$ where the λ_{j} 's are positive integers and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}$. The number of partitions of n is denoted by $p(n)$.
Theorem [Euler].

$$
P(x):=\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{j=1}^{\infty} \frac{1}{1-x^{j}}
$$

Theorem [Euler]. The number of partitions of n into odd parts is equal to the number of partitions of n into distinct parts.

Additional examples.

Example 8. Show that the number of subsets of $[n]$ containing exactly one pair of consecutive integers is

$$
\sum_{k=1}^{n-1} F_{k} F_{n-k}=\frac{2 n F_{n+1}-(n+1) F_{n}}{5}
$$

Example 9. Find the sequence $\left(a_{n}\right)$ if $a_{0}=1$ and

$$
\sum_{k=0}^{n} a_{k} a_{n-k}=1, \quad n \geq 1
$$

Example 10. Prove that the number of partitions of n in which all the even parts are distinct is the same as the number of partitions of n where each part is repeated at most three times.

Example 11. Prove that the number of partitions of n into parts not divisible by d is the same as the number of partitions of n in which no part occurs d or more times.
Example 12. Find the number of permutations of $[n]$ that have no r-cycle.

