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1. Recall Pythagoras’s theorem a2 + b2 = c2 for the sides of a right-angles
triangle. When can a, b, c be integers? Everyone knows the case 32 +42 =
52. Other solutions include 52 + 122 = 132, 72 + 242 = 252, .... The
problem is to describe all solutions. We take out any common factors, so
can assume that c is positive and coprime to a and b to eliminate trivial
variations.

2. Algebraic solution: c must be odd (why?) so exactly one of a, b is odd: we
may as well assume a is odd and b is even. Then (b/2)2 = ((c−a)/2)((c+
a)/2), so the two factors on the right are both squares as they are coprime
and their product is a square. So c − a = 2s2, c + a = 2t2 for some s, t.
This gives the solution c = s2 + t2, a = t2 − s2, b = 2st, for s < t positive
integers with one odd, one even.

3. What are s and t for the solutions in part 1? What solution do you get
from s = 2, t = 5?

4. Geometric solution: Put x = a/c, y = b/c, so x and y are rational with
x2 + y2 = 1. In other words we want to find rational points on the unit
circle. We can do this by drawing the line through (−1, 0) and (x, y) : it
intersects the y-axis in a point (0, t). Note that t is rational or infinity
if and only if both x and y are rational. Formulas: t = y/(x + 1), x =
(1− t2)/(1 + t2), y = 2t/(1 + t2).

5. Find the values of t corresponding to the 8 solutions (±3)2 + (±42) = 52,
(±4)2 + (±32) = 52. Find the right angled triangles with integer sides
corresponding to t an integer.

6. So we have two pictures of solutions: we can think of them either as points
in a rational line plus infinity, or as rational points on a unit circle. (In
algebraic geometry the circle and line are said to be “birational”.)

7. The solutions form a GROUP. Reason: points on the unit circle correspond
to rotations, and we can multiply rotations. Formulas: x = cos θ, y =
sin θ. sin(θ1 + θ2) = sin(θ1) cos(θ2) + cos(θ1) sin(θ2), cos(θ1 + θ2) =
cos(θ1) cos(θ2)− sin(θ1) sin(θ2). So (x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 +
x2y1).

8. What solution do we get by multiplying the solution 32+42 = 52 by itself?
What happens if we multiply it by 42 + 32 = 52?
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9. We have t = tan(θ/2). This is a useful substitution for doing integrals of
rational functions of sin θ and cos θ, because sin θ = 2t/(1 + t2), cos θ =
(1 − t2)/(1 + t2), and dθ = 2dt/(1 + t2). The geometric meaning of this
is that we are turning an integral over the unit circle into an integral over
the y-axis by projecting from the point (−1, 0). Example: use this to find

the integral
∫ θ
0
dθ/(2 + cos θ).

10. These formulas are not so easy to remember. Better to put (x, y) = x+ iy
with i2 = −1: then we are just multiplying complex numbers of absolute
value 1.

11. Recall geometric meaning of operations on complex numbers: Addition
is addition of vectors, multiplication multiples lengths and adds angles,
absolute value

√
zz is distance from 0 and has the usual properties |z1z2| =

|z1| × |z2|, |z1 − z2| ≤ |z1|+ |z2| (“metric inequality”).

12. Suppose m and n are both sums of two squares. Show that mn is a sum
of two squares. (Write m and n as the squares of the absolute values of
Gaussian integers, then multiply these Gaussian integers. This gives the
identity (x21 + y21)(x22 + y22) = (x1x2 − y1y2)2 + (x1y2 + x2y1)2. There are
similar identities for sums of 4 and 8 squares that you can get by replacing
the complex numbers by quaternions of octonions.)

13. Write 5, 13, 17 as a sum of two squares, and use this to find right angled
triangles of sides 5, 13, 17. There are 8 ways of writing 5 as a sum of 2
squares, corresponding to the 8 ways a knight can move in chess.

14. Which primes are sums of two squares? 5, 13, 17, 29, 37 are, 3, 7, 11, 19, 23, 31
are not. What is the pattern?

15. Any square has remainder 0 or 1 mod 4. Show that numbers that are 3
mod 4 cannot be a sum of two squares. Find a positive number 1 mod 4
that is not a sum of two squares.

16. Show that any number 7 mod 8 cannot be a sum of 3 squares. Slightly
trickier: show that a number of the form 4m(8n+ 7) cannot be a sum of
3 squares. (Conversely any positive integer not of this form is a sum of 3
squares, but this is much harder to prove.)

17. Find an example to show that if m and n are sums of 3 squares, then mn
need not be a sum of 3 squares.

18. Are all primes 1 mod 4 a sum of 2 squares? Yes, but this is not so easy to
show. There are two easy implications: (1) if p is a prime that is a sum
of 2 squares then x2 + 1 is divisible by p for some x, and (2) If x2 + 1
is divisible by p for some x then p is 1 mod 4. We will show both these
implications “reverse”.

19. Suppose p is 1 mod 4. Then Z/pZ∗ is cyclic of order p−1, which is divisible
by 4. The element −1 has order 2 in this group. Pick any generator g:
then g(p−1)/4 has square −1 (why?).
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20. This gives an efficient algorithm for finding a square root of −1 mod p.
Just pick any generator and raise it to the power of (p − 1)/4. Problem:
how do we find a generator? Answer: random guessing. For any random
element g, there is a 1 in 2 chance that g(p−1)/4 has square −1. Example:
if p = 17 we first try g = 2 which does not work, then try g = 3 which
does.

21. How do we find g(p−1)/4 is p is very large, say 1000 digits (on a computer
of course)? We first work out g1, g2, g4, and so on mod p by repeated
squaring. Key point: since we reduce mod p every time we never need to
use more than 2000 digits. Then we work out gk by writing k in binary:
for example g37 = g1×g4×g32. (Rather surprisingly this is not always the
most efficient way to work out gk. This method takes 6 multiplications to
work out g15; show how to work out g15 using only 5 multiplications.)

22. Suppose we have found a solution of z2+1 = np. How do we find a solution
of x2 + y2 = p? Write these in terms of Gaussian integers: (z+ i)(z− i) =
np, (x+iy)(x−iy) = p. So the highest common factor of z+i and p should
be x± iy) times a unit ik. How do we find this highest common factor for
Gaussian integers? Same way as for integers: use Euclid’s algorithm.

23. Recall Euclid’s algorithm for finding the greatest common divisor of two
positive integers: repeatedly replace the largest one by the remainder
when dividing by the other. Use this to find the greatest common divisor
of 39 amd 15. (For small numbers it is often faster just to factorize the
numbers, but for large numbers with hundreds of digits it is far faster to
use Euclid’s algorithm.)

24. Key point: we can do division with remainder for Gaussian integers: Given
a, b 6= 0 we can find q, r with a = bq+ r, |r| < |b|. This is because we can
find q with |q − a/b| < 1: the plane is covered by unit disks with centers
the lattice points q. Example: find the greatest common divisor of 5 + i
and 13: 13/(5 + i) = (65− 5i)/26 which is closest to the Gaussian integer
2, so put 13 = 2(5 + i) + 3− 2i. The remainder is 3− 2i, so now we divide
(5+ i)/(3−2i) = 1+ i with no remainder. So the greatest common divisor
of 13 and 5 + i is 3 − 2i. This gives the expression of 13 as the sum of 2
squares 13 = 32 + 22.

25. Of course this is a silly way to write 13 as the sum of 2 squares: it is easier
to find the solution by trial and error. However for large numbers this
method is MUCH faster than trial and error. Suppose a computer can do
a billion operations a second. Estimate very roughly how long it will take
to write a hundred digit prime as a sum of 2 squares using trial and error,
and using the method above.

26. How many ways can we write a number as a sum of 2 squares? 50, 51, 52

can be written as a sum of 2 squares in 4, 8, 12 ways. Guess how many
ways 53 can be written as a sum of 2 squares. In general we have 5n = zz
where z = ik(2+i)m(2−i)n−m and z is the complex conjugate of z. There
are 4 possibilities for k and n+ 1 possibilities for m, so this gives 4(n+ 1)
ways to write 5n = x2 + y2 as a sum of 2 squares where z = x+ iy.
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