
Berkeley Math Circle
Monthly Contest 1 – Solutions

1. Find, with proof, all ways to write 1 as a sum of three fractions, each with numerator 1 and positive integer denominator. (The

order of the fractions is irrelevant, so for instance
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Solution. There are three solutions:
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Now we must prove that these are the only solutions. If the fraction 1/2 appears in the expression, the remaining fractions must
add to 1/2, so one of them is greater than or equal to 1/4. If this fraction is 1/3, we get the solution 1/2 + 1/3 + 1/6, and if
this fraction is 1/4, we get the solution 1/2 + 1/4 + 1/4. Thus, if the fraction 1/2 is used, we cannot get any new solutions.

If the fraction 1/2 does NOT appear in the expression, then all three fractions are at most 1/3. Then their sum will certainly be
less than 1 unless they are all equal to 1/3. Thus in this case, we only get the third solution, 1/3 + 1/3 + 1/3.

2. Determine whether there exists a number that begins with 2 having the property that, when the 2 is moved to the end, the
number is

(a) doubled;
(b) tripled.

Solution.

There is no such number. Suppose that it existed; represent it by 2 · · · a b where a and b are the last two digits of the number.
Let us write the digit-by-digit multiplication:

2 · · · · · · a b
× 2

· · · · · · a b 2

From the last column it is clear that there are only two choices for b: 1 and 6. We now look at the next-to-last column. If b is
1, there is no way that the multiplication of a by 2, without an added carry, can give the odd number 1. On the other hand, if b
is 6, there is no way that the multiplication of b by 2, with the added carry of 1 resulting from 6 × 2 = 12, can give the even
number 6.

The answer is yes; such a number is 285714, which satisfies 285714 × 3 = 857142. There is no need to say more; we have
rigorously proved that such a number exists. However, we will mention two of many methods for finding this number. The first
is the end-digit analysis used in part (a):

· · ·x× 3 = · · · 2 gives x = 4 (no other digit works)
· · ·x4× 3 = · · · 42 gives x = 1, etc.

This process continues until we reach a number that begins with 2.

The second method is an algebraic one. Suppose that the number is x and has n digits. Then moving a 2 from the beginning to
the end of x can be achieved by first multiplying x by 10 (thus adding a 0 at the end), adding 2 (thus changing this 0 to a 2),
and subtracting 2 · 10n (deleting the 2 at the beginning). We have the condition

10x+ 2− 2 · 10n = 3x,

which we can solve for x:

10x− 3x = 2 · 10n − 2

7x = 2 · 10n − 2

x =
2 · 10n − 2

7
.

Thus for x to exist, 2 · 10n − 2 must be divisible by 7. As is easily verified, this does not hold for n = 1, 2, 3, 4, or 5, but it
works for n = 6, yielding

x =
2000000− 2

7
= 285714.
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3. A circle is inscribed in a sector that is one sixth of a circle of radius 6. (That is, the circle is tangent to both segments and the
arc forming the sector.) Find, with proof, the radius of the small circle.
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Solution. Because the circles are tangent, we can draw the line AT , which passes through the center O of the other circle. Note
that triangles ADO and AEO are symmetric (this is HL congruence: AO is shared, radii OD and OE are equal, and angles
ADO and AEO are right). Therefore, since ∠BAC is 60◦, angles BAT and TAC are each 30◦. Now ADO is a 30◦-60◦-90◦

right triangle. If we let r be the radius of the small circle, then OD = r and OA = 2r, but OT = r so AT = 3r. But AT is
the radius of the large circle, so 3r = 6 and r = 2.

4. Call a positive integer one-full if it satisfies the following criteria:

(a) Every digit is either 0, 1, or 2.

(b) Out of every two consecutive digits, at least one of them is a 1.

For n ≥ 2, calculate the number of n-digit one-full numbers. (Numbers beginning with the digit 0 are not allowed.)

Solution. The answer is 2n. It is clear that there are four 2-digit one-full numbers: 10, 11, 12, and 21. To prove that the
required number is 2n for all n ≥ 3, it is enough to show that there are twice as many n-digit one-full numbers as (n− 1)-digit
one-full numbers for every n. Given an (n− 1)-digit one-full number, we construct two different n-digit one-full numbers via
the following rules:

• If the first digit is 1, we replace it with 11 and then with 21.

• If the first digit is 2, we replace it with 12 and then with 10.

Since 2’s and 0’s have the same function in the middle of a number, the two numbers that we get using this process are both
one-full. Moreover, since any n-digit one-full number must begin with one of the four 2-digit one-full numbers, we can get all
n-digit one-full numbers in this way. Thus there are twice as many n-digit one-full numbers as (n− 1)-digit ones.

5. For integers n ≥ 1, prove that the product
3 · 12 · 21 · 30 · · · · · (9n− 6)

is divisible by n!.

Solution. Let p be a prime number. We will prove that the number A of factors of p in 3 · 12 · · · · · (9n− 6) is greater than or
equal to the number B of factors of p in n!.

We first explain the widely known method for computing B. Out of the numbers from 1 to n, exactly bn/pc of them are
multiples of p; they will contribute bn/pc “first” factors of p to the product n!. In addition, bn/p2c of these numbers are also
divisible by p2, giving bn/p2c “second” factors of p. This continues, and we get

B =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · · ,

where the sum continues until eventually all of its terms become 0 due to a lack of terms divisible by very high powers of p.

Now we estimate A. If p = 3, then A = n since every term of the arithmetic sequence 3, 12, 21, . . . is divisible by 3 but not 9.
In this case it is clear that

B =
⌊n
3

⌋
+
⌊ n
32

⌋
+
⌊ n
33

⌋
+ · · · ≤ n

3
+

n

32
+

n

33
+ · · · = n

2
< n.

Now assume that p 6= 3. Divide the arithmetic progression 3, 12, 21, . . . , (9n − 6) into bn/pc blocks of length p, discarding
any terms that remain; because the common difference 9 is relatively prime to p, each block will have one representative of
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each congruence class mod p, and in particular exactly one multiple of p. Thus the product 3 · 12 · 21 · 30 · · · · · (9n− 6) will
have at least bn/pc “first” factors of p. By the same argument, using blocks of length p2, there are at least bn/p2c “second”
factors of p, and so on, so

A ≥
⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · · = B,

as desired.

6. Circles j and k, centered at O and P respectively, do not intersect. The two tangent rays from O to k meet j at A and B,
respectively, and the two tangent rays from P to j meet k at C and D, respectively. Prove that A, B, C, and D are the vertices
of a rectangle.
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Solution. Without loss of generality, we
may assume that A, B, C, and D have
the relative positions shown. We label
the points of tangency W , X , Y , and
Z. We also note that the entire con-
struction is symmetric about about the
line of centers OP , which therefore per-
pendicularly bisects segments AB, CD,
WX , and Y Z at their respective mid-
points K, L, M , and N . Let r1 and r2
be the respective radii of j and k. We
will first prove that AK = CL. Since
4OAK ∼ 4OY N ∼ 4OPY , we
have

AK

OA
=

PY

OP
, so AK =

OA · PY

OP
=

r1r2
OP

.

Symmetrically, CL = r1r2/OP so AK = CL. Now quadrilateral AKLC has right angles at K and L and equal, parallel
sides AK = CL, so it is a rectangle. Symmetrically, BKLD is a rectangle so ABDC is a rectangle.

7. In the hold of a pirate ship are ten treasure chests lying on pedestals in a circular arrangement. The captain would like to move
each chest clockwise by one pedestal. However, the chests are so heavy that the captain and his assistant can only switch two
chests at a time. What is the minimum number of switches needed to accomplish the task?

Solution. The answer is 9. It is easy to see that nine moves are sufficient; they can move a single chest counterclockwise one
pedestal at a time, until after nine moves all of the other chests have been moved clockwise one pedestal.

Suppose that, at each stage of the game, we draw an arrow from each pedestal to the pedestal on which the chest which it now
holds originally sat. Then every pedestal has one incoming and one outgoing arrow, and the overall graph can be decomposed
into some number of disconnected cycles. Let c be the number of cycles. We note that at the beginning of the process, c = 10
(every arrow is its own cycle) while at the end, c = 1 (all the pedestals are connected in a ring).

We now claim that at each move, c cannot decrease by more than 1. Each move affects only two pedestals, which may initially
belong to one or two cycles; the performance of the move may fuse two cycles into one or break up cycles into more cycles,
but it certainly cannot replace two cycles by zero cycles. Therefore, c decreases by at most 1 at each move and hence cannot
reach as low as 1 before the ninth move.

Remark. Math circlers with a penchant for enumerative combinatorics may wish to prove that there are precisely 100,000,000
ways of accomplishing the task in nine moves.
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