
Berkeley Math Circle
Monthly Contest 6 – Solutions

1. Is
1

2
+

3

4
+

5

6
+ · · ·+ 2011

2012

an integer? Prove your answer.

Solution. The answer is no. We present two solutions.

(1) We focus on the last term whose denominator is twice a prime number, namely 1993/1994 with 1994 = 2 · 997. This is
the only term whose denominator is divisible by the prime 997, and therefore the sum can be written as

A

B
+

1993

1994
,

where A/B is in lowest terms and B is not divisible by 997. Therefore the sum is not an integer, since two fractions whose
sum is an integer must have the same denominator in lowest terms.

(2) We focus on the last term whose denominator is a power of 2, namely 1023/1024 with 1024 = 210. All the other terms
have denominators with at most 9 factors of 2, so their least common denominator has at most 9 factors of 2. Therefore the
sum can be expressed as

A

B
+

1023

1024

where A/B is in lowest terms and B is not divisible by 1024. Once again we have a contradiction with two fractions in
lowest terms summing to an integer although their denominators are different.

2. At a market, a buyer and a seller each have four exotic coins. You are allowed to label each of the eight coins with any positive
integer value in cents. The labeling is called n-efficient if for any integer k, 1 ≤ k ≤ n, it is possible for the buyer and the
seller to give each other some of their coins in such a way that, as a net result, the buyer has paid the seller k cents. Find the
greatest positive integer n such that an n-efficient labeling of the coins exists.

Solution. The answer is 240.

To see that n > 240 is impossible, note that there are 28 = 256 ways for the transaction to happen, since each coin either
changes hands or does not change hands. However, the 24 = 16 ways in which the buyer keeps all four of his coins clearly
cannot allow the buyer to pay the seller a positive amount. Therefore there are at most 240 different amounts which the buyer
can pay the seller.

To make these amounts the consecutive integers 1, 2, 3, . . . , 240, we assign values as follows:

Buyer: 16, 32, 64, 128
Seller: 1, 2, 4, 8.

Then the buyer can give the seller any multiple 16x of 16 cents up to 240 by writing x in binary as a sum of distinct powers of
2, and the seller can correspondingly give the buyer any amount from 0 to 15 cents in change.

3. Let ABCD be a square in the coordinate plane such that A is on the x-axis and C is on the y-axis. Prove that one of the
vertices B and D lies on the line y = x.

Solution. Assume without loss of generality that the vertices A, B, C, D are labeled in counterclockwise order. Let A and C
have the coordinates (a, 0) and (0, c) respectively. The center M of the square is the midpoint of AC and therefore has the
coordinates (a

2
,
c

2

)
.

To get from M to C, we can move upward c/2 units and then leftward a/2 units (of course, these are signed distances,
indicating movement in the opposite directions if they are negative). Since B is the 90◦ clockwise rotation of C around M , we
can get from M to B by moving rightward c/2 units and then upward a/2 units. This takes us from M to the point(a

2
+

c

2
,
c

2
+

a

2

)
,

which clearly lies on the line y = x.
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4. Let a, b, c, x be real numbers such that

ax2 − bx− c = bx2 − cx− a = cx2 − ax− b.

Prove that a = b = c.

Solution. Let u = a − b, v = b − c, and w = c − a. Then u + v + w = 0, and we would like to prove that u = v = w = 0.
We have

ax2 − bx− c = bx2 − cx− a

(a− b)x2 + (−b+ c)x+ (−c+ a) = 0

ux2 − vx− w = 0. (1)

In a similar manner, we get

vx2 − wx− u = 0 (2)

and

wx2 − ux− v = 0. (3)

Taking v times (1) minus u times (2) eliminates the x2 term; we get

(v2 − wu)x = u2 − vw. (4)

Letting A = u2 − vw, B = v2 − wu, C = w2 − uv, we now have Bx = A, and analogously Cx = B and Ax = C. We see
that if any of A, B, and C are zero, then they all are. So we have two cases:

Case 1. A = B = C = 0, that is, u2 = vw, v2 = wu, and w2 = uv. Clearly if one of u, v, and w is 0, then they all are and we
are done. Otherwise, dividing the first equation by the second leads to v3 = w3 and v = w. Similarly u = v = w. But since
u+ v + w = 0, the only common value that u, v, and w can have is 0 and we are done.

Case 2. A, B, and C are all nonzero. Multiplying the three equations Bx = A, Cx = B, and Ax = C together, we derive that
x3 = 1 so x = 1. Plugging x = 1 into the original equations gives

a− b− c = b− c− a = c− a− b,

so a = b = c as desired.
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5. A 9× 7 rectangle is tiled using only the two types of tiles below (the L-tromino and the 2× 2 square):

They may be used in any orientation. Let s be the number of 2× 2 squares in such a tiling; find all possible values of s.

Solution. Answer: 0 or 3. It is clear by considerations of area that the number of 2× 2 squares must be a multiple of 3. Now
we prove that a tiling with 6 or more 2× 2 squares is impossible.

Draw ×’s in some of the cells of the 9× 7 board as shown in the first of the following pictures.

Clearly, no tile of either of the two given shapes can cover more than one ×. So at least 20 tiles must be used. But if there are
s ≥ 6 of the 2× 2 tiles, the number of L-tiles is

63− 4s

3

and the total number of tiles is
s+

63− 4s

3
=

63− s

3
≤ 63− 6

3
= 19,

a contradiction.

The remaining two figures above show how the tiling may be accomplished with zero and three 2× 2 squares respectively.

6. On a quiz, every question is solved by exactly four students, every pair of questions is solved by exactly one student, and none
of the students solved all of the questions. Find the maximum possible number of questions on the quiz.

Solution. Number the students and the questions so that student S1 solved questions Q1, . . . , Qk but not Qk+1, . . . , Qn.
Assume first that k > 4. Since Qk+1 is solved by exactly 4 students, while Qi and Qk+1 are solved by exactly one student
for each 1 ≤ i ≤ k, there must be another student who solved two of the questions Q1, . . . , Qk besides S1, a contradiction.
Therefore each student solved at most four questions. We conclude that there are at most 13 questions—Q1 plus at most 3
other questions solved by each of the 4 students who solved Q1.

The following example shows that a quiz with 13 questions is possible.
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7. In acute triangle ABC, the exterior angle bisector of ∠BAC meets ray BC at D. Let M be the midpoint of side BC. Points
E and F lie on the line AD such that ME⊥AD and MF⊥BC. Prove that

BC2 = 4AE ·DF.

Solution. Because DM2 = DE ·DF , we can forget point F and replace the condition to be proved by

DE ·BC2 ?
= 4AE ·DM2.

Let AG be the internal bisector of angle BAC (G is on BC). Since the internal and external angle bisectors are perpendicular,
we have4DAG ∼ 4DEM and

DA

DE
=

DG

DM
AE

DE
=

GM

DM
.

Therefore we can forget point E and replace the condition to be proved by

BC2 ?
= 4GM ·DM.

We have

4GM ·DM = 4

(
GB − CG

2

)(
DB +DC

2

)
= (GB − CG)(DB +DC)

and

BC2 = (GB + CG)(DB −DC).

Expanding out the equality of these two expressions gives CG · DB
?
= GB · DC, which is clear from the Angle Bisector

Theorem
AB

AC
=

GB

CG
=

DB

DC
.
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