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We begin with a set of problems that will be shown to be congyetquivalent. The solution to
each problem is the same sequence of numbers called theRatahbers. Later in the document
we will derive relationships and explicit formulas for that@lan numbers in many different ways.

1 Problems

1.1 Balanced Parentheses

Suppose you have pairs of parentheses and you would like to form valid grogpiof them, where
“valid” means that each open parenthesis has a matchingcfmarenthesis. For examplé(())”
is valid, but “())()(” is not. How many groupings are there for each value ®f

Perhaps a more precise definition of the problem would be #h#&ring of parentheses is valid
if there are an equal number of open and closed parenthedésyan begin at the left as you move
to the right, add each time you pass an open and subttaach time you pass a closed parenthesis,
then the sum is always non-negative.

Table 1 shows the possible groupingsfiox n < 5.

n=0:|* 1 way
n=110 1 way
n=2100, (O) 2 ways
n=3 1000, O, (ODYO, OO), (CON 5 ways
n=4:1 0000, OO0, OO, OCOO), OO, 14 ways

MHOO, (M), OO, (ONO, (OO,
00, (COIO), (COO)), (O

n=5 100000, OO0, OOWO, OOLO), OOWO), | 42 ways
OO0, O, OO, OCONO, OO0,
OO0, OUOIO), OO0, OO, (OXO0O00,
(MO, MO, (OHXCOO), (OO, (OOXOO,
OO0, CCONOO, CCON), COOOIO, (OO,
(OO, CCOONO, CCCOIMO, COOOO), (OO,
OO0, OO0, (OO, CCOXOO), (OO,
(COOYO), CCCONOY, CCOOON, (COCOIN), (COION,
(CCO0))), (O

Table 1: Balanced Parentheses

* |t is useful and reasonable to define the countifos 0 to bel, since there is exactly one way
of arranging zero parentheses: don’t write anything. Itkeélcome clear later that this is exactly the
right interpretation.



1.2 Mountain Ranges

How many “mountain ranges” can you form withupstrokes anad downstrokes that all stay above
the original line? If, as in the case above, we consider tteebe a single mountain range with zero
strokes, Table 2 gives a list of the possibilities o< n < 3:

n=20:] % 1 way
n=11{/\ 1 way
n=2: /\ 2 ways
/N/\, / N\
n=3: /\ 5 ways
/\ /\ /\/\ / N\
/ININ/N, /NN, /NI, / \, / \

Table 2: Mountain Ranges

Note that these must match the parenthesis-groupings addwee“(” corresponds to #” and
the ) to “\". The mountain ranges for = 4 andn = 5 have been omitted to save space, but there
are14 and42 of them, respectively. It is a good exercise to drawtheersions withn = 4.

In our formal definition of a valid set of parentheses, weestahat if you add one for open
parentheses and subtract one for closed parenthesesgisanthwould always remain non-negative.
The mountain range interpretation is that the mountainisngiter go below the horizon.

1.3 Diagonal-Avoiding Paths

In a grid ofn x n squares, how many paths are there of lerzgtithat lead from the upper left corner
to the lower right corner that do not touch the diagonal dblitee from upper left to lower right? In
other words, how many paths stay on or above the main diagonal
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Figure 1 Corresponding Path and Range

This is obviously the same question as in the example abdtleffre mountain ranges running
diagonally. In Figure 1 we can see how one such path correlsgora mountain range.

Another equivalent statement for this problem is the follgv Suppose two candidates for
election, A and B, each receives votes. The votes are drawn out of the voting urn one after the
other. In how many ways can the votes be drawn such that catedidis never behind candidate
B?



1.4 Polygon Triangulation

If you count the number of ways to triangulate a regular potywith n + 2 sides, you also obtain
the Catalan numbers. Figure 2 illustrates the triangulatfor polygons having, 4, 5 and6 sides.
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Figure 2: Polygon Triangulations

As you can see, there ate 2, 5, and14 ways to do this. The2-sided polygon” can also be
triangulated in exactly way, so the case whefe= 0 also matches.

1.5 Hands Across a Table

If 2n people are seated around a circular table, in how many wayalcaf them be simultaneously
shaking hands with another person at the table in such a vaayndime of the arms cross each other?

Figure 3 illustrates the arrangements #oi, 6 and8 people. Again, there arg 2, 5 and14 ways
to do this.
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Figure 3: Hands Across the Table



1.6 Binary Trees

The Catalan numbers also count the number of rooted bineeyg tvithn internal nodes. lllustrated
in Figure 4 are the trees correspondingtg n < 3. There ard, 1,2, and5 of them. Try to draw
the 14 trees withn = 4 internal nodes.

A rooted binary tree is an arrangement of points (nodes)iaed tonnecting them where there
is a special node (the root) and as you descend from the haog aire either two lines going down
or zero. Internal nodes are the ones that connect to two riaslew.
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Figure 4: Binary Trees

1.7 Plane Rooted Trees

A plane rooted tree is just like the binary tree above, extegita node can have any number of

sub-nodes; not just two.
Figure 5 shows a list of the plane rooted trees withdges, fol) < n < 3. Try to draw thel4

trees withn = 4 edges.

0 Edges:

1 Edge:
!

2 Edges:
I A

3 Edges: {AX/X}&A\

Figure 5: Plane Rooted Trees

1.8 Skew Polyominos

A polyomino is a set of squares connected by their edges. ¥ glodyomino is a polyomino such
that every vertical and horizontal line hits a connectedo$etquares and such that the successive
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Table 3: Skew Polyominos with Perimetar + 2

columns of squares from left to right increase in height—b#om of the column to the left is
always lower or equal to the bottom of the column to the ri@imilarly, the top of the column to
the left is always lower than or equal to the top of the columihe right. Table 3 shows a set of
such skew polyominos.

Another amazing result is that if you count the number of sgelyominos that have a perimeter
of 2n 4 2, you will obtainC,,. Note that it is the perimeter that is fixed—not the numberpfeses
in the polyomino.

1.9 Multiplication Orderings

Suppose you have a setof+ 1 numbers to multiply together, meaning that therearaultipli-
cations to perform. Without changing the order of the numsltkemselves, you can multiply the
numbers together in many orders. Here are the possiblepticdtion orderings fod < n < 4
multiplications. The groupings are indicated with parests and dot for multiplication in Table 4.

n=0 | (a) 1 way

n=11 (a-d) 1 way

n=21 ((a-b)-¢), (a-(b-c)) 2 ways

n=31 (((a-b)-c)-d), ((ad)-(c-d)), ((a-(b-¢))-d), 5 ways
(a-((b-c)-d)), (a-(b-(c-d)))

n=41 ((((ad)-c)-d)-e), (((a-b)-c)-(d-e)), (((a-b)-(c-d))-€), | 14 ways
((a-b)-((c-d)-€)), ((a-b)-(c-(d-€))), (((a:(b-c))-d)-e),
((a-(b-c))-(d-€)), ((a-((b-c)-d))-€), ((a-(b-(c-d)))-e),
(a-(((b-c)-d)-€)), (a-((b-c)-(d-€))), (a-((b-(c-d))-€)),
(a-(b-((c-d)-€))), (a-(b-(c-(d-€))))

Table 4: Multiplication Arrangements

To convert the examples above to the parenthesis notatiase everything but the dots and the



closed parentheses, and then replace the dots with opentipeses. For example, if we wish to
convert(a-(((b-c)-d)-e)), first erase everything but the dots and closed parenthe$es;). Then
replace the dots with open parentheses to obtgi)()).

The examples in Table 4 are arranged in exactly the same asdbe entries in Table 1 with the
correspondence described in the previous paragraph. Toneert a few yourself in both directions
to make certain you understand the relationships.

2 A Recursive Definition

The examples above all seem to generate the same sequenaalzéns. In fact it is obvious that
some are equivalent: parentheses, mountain ranges arahdieavoiding paths, for example. Later
on, we will prove that the other segences are also the sante We're convinced that they are the
same, we only need to have a formula that counts any one ofdneinthe same formula will count
them all.

If you have no idea how to begin with a counting problem likis tbne good approach is to write
down a formula that relates the count for a giveto previously-obtained counts. It is usually easy
to count the configurations far = 0, n = 1, andn = 2 directly, and from there, you can count
more complex versions.

In this section, we’'ll use the example with balanced paresgk discussed and illustrated in
Section 1.1. Let us assume that we already have the counfis fo2, 3, --,n — 1 pairs and we
would like to obtain the count for pairs. LetC; be the number of configurations dimatching
pairs of parentheses, §& = 1,C; = 1, C; = 2, C3 = 5, andCy4 = 14, which can be obtained by
direct counts.

We know that in any balanced set, the first character has t§'bé/e also know that somewhere
in the set is the matching “)” for that opening one. In betwte pair of parentheses is a balanced
set of parentheses, and to the right of it is another balaseed

(4)B,

whereA is a balanced set of parentheses and 98.i8oth A and B can contain up te — 1 pairs
of parentheses, but # containsk pairs, thenB contains: — k — 1 pairs. Notice that we will allow
either A or B to contain zero pairs, and that there is exactly one way taddan’t write down any
parentheses.

Thus we can count all the configurations whdrbas0 pairs andB hasn — 1 pairs, whered has
1 pair andB hasn — 2 pairs, and so on. Add them up, and we get the total number diigroations
with n balanced pairs.

Here are the formulas. It is a good idea to try plugging in thebers you know to make certain
that you haven’t made a silly error. In this case, the fornfiafa”s; indicates that it should be equal
toC3=2-1+1-1+1-2=05.

Ci = CoCy (1)
Cy = C1Cy+ CoCy (2)
C3 = CyC+ CiCy + CoCh (3)
Cy = C3C+ CyCh 4 C1Cy + CyCs (4)



Cn = Cn—ICO + Cn—QCl + -+ Clcn—Q + COCn—l (5)

Beginning in the next section, we will be able to use thesans®ee formulas to show that the
counts of other configurations (triangulations of polygansted binary trees, rooted tress, et cetera)
satisfy the same formulas and thus must generate the samensecpf numbers.

But simply by using the formulas above and a bit of arithmatiés easy to obtain the first
few Catalan numberst, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,
2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020,
91482563640, 343059613650, 1289904147324, . ..

2.1 Counting Polygon Triangulations

It is not hard to see that the polygon triangulations diseds$s section 1.4 can be counted in much
the same way as the balanced parentheses. See Figure 6.

OO
WO C

Figure 6: Octagon Triangulations

In the figure we consider the octagon, but it should be cleatrttie same argument applies to
any convex polygon. Consider the horizontal line at the tbfhe polygon. After triangulation, it
will be part of exactly one triangle, and in this case, thesexactly six possible triangles of which
it can be a part. In each case, once that triangle is seletiee is a polygon (possibly empty) on
the right and the left of the original triangle that mustlitée triangulated.

What we would like to show is that a convex polygon with> 3 sides can be triangulated in
C,_o ways. Thus the octagon should haVe » = Cy triangulations.

For the example in the upper left of Figure 6, the triangledsear-sided figure on the left and
an empty figure (essentially a two-sided polygon) on thetrighis triangulation can be completed
by triangulating both sides; the one on the left can be don@imvays and the empty one on the
right, Cy ways, for a total of”; - Cy. The middle example on the top leaves a pentagon and a iang|
that, in total, can be trianguateddry - C; ways. Similar arguments can be made for all six positions
of the triangle containing the top line, so we conclude that:

Co=C5-Co+Cs-Ci+C5-Co+Ch-C3+C1-Cy+Cp-Cs,

which is exactly how the Catalan numbers are defined for tetedgparentheses.
Convince yourself that a similar argument can be made fois@®gyoriginal convex polygon.



2.2 Counting Non-Crossing Handshakes

To count the number of hand-shakes discussed in Sectionelcamuse an analysis similar to that
used in section 2.1.

If there are2n people at the table pick any particular person, and thabpessll shake hands
with somebody. To admit a legal pattern, that person wilhtaMeave an even number of people on
each side of the person with whom he shakes hands. Of thenimai — 1 pairs of people, he can
leave zero on the right and— 1 pairs on the left] on the right andi — 2 on the left, and so on. The
pairs left on the right and left can independently chooseddtlye possible non-crossing handshake
patterns, so again, the coudi} for n pairs of people is given by:

Ch =Cno1Cy+ CpoCi+ -+ C1Cp_o + CoCp_1,

which, together with the fact that, = C; = 1, is just the definition of the Catalan numbers.

2.3 Counting Trees

Counting the binary trees discussed in Section 1.6 is sirdlavhat we've done previously. Obvi-
ously there is one way to make a rooted binary tree with zemmerinternal node. To work out the
number of trees wit internal node, note that one of thosenodes is the root node, and then the
n — 1 additional internal nodes must be distributed on the lefheright below the root node. These
can be distributed ason the left andh — 1 on the right,1 on the left anch — 2 on the right, and so
on, yielding exactly the same formula that we had in everyipres example.

To count the rooted plane trees discussed in Section 1.7 evthasame strategy. There is one
example each for trees with zero and one edge, so the couetatethe samey = C;, = 1.

0x3

- AR

1 Edge:

I 1x2:
2 Edges: ﬁ I

I A 2x1: jo
3 Edges: f\

AN A 0 TNAW\

Figure 7: Plane Rooted Trees With 4 Edges

Now, to count the number of plane rooted trees witly 1 edges we again begin from the root.
There is at least one edge going down (leaving us with 1 edges to draw). The remainimg— 1
edges can be placed below that initial edge or hooked djrézxtihe root node to the right of that



edge. The: — 1 edges, as before, can be distributed to these two locatshardn — 1, asl and
n — 2, et cetera. It should be clear that the same formula defihie@atalan numbers will apply to
the count of rooted plane trees.

In Figure 7 the table on the left dupliates the structureessrwith3 or fewer edges and the table
on the right shows how the trees wittedges are generated from them.

2.4 Counting Diagonal-Avoiding Paths

Up to now we do not have an explicit formula for the Catalan bars. We know that a large
collection of problems all have the same answers, and wedwauirsive formula for those numbers,
but it would be nice to have an explicit form.

Perhaps the easiest way to obtain an explicit formula folGatlan numbers is to analyze the
number of diagonal-avoiding paths discussed in Section W8 will do so by counting the total
number of paths through the grid and then subtract off thebmurof paths that hit the diagonal.

Figﬁre 8: Modifying a Bad Path

Figure 8 illustrates a typical path that we do not want to ¢sinte it crosses the dotted diagonal
line. Such a path may cross that line multiple times, butehgmlways a first time; in the figure,
point P is the first grid point it touches on the wrong side of the dizoThere will always be such
a pointP for every bad path.

For every such path, reflect the path beginningatevery time the original path goes to the
right, go down instead, and when the original path goes dgamo the right. It is clear that by the
time the path reaches the poiRtit will have traveled one more step down than across, so It wil
have moved: steps to the right ankl + 1 steps down. The total path hassteps across and down,
so there remaim — k steps to the right and — & — 1 steps down. But since we swap steps to the
right and steps down, the modified path with have a totékof+ (n — k — 1) = n — 1 steps to the
rightand(k + 1) + (n — k) = n + 1 steps down. Thus every modified path ends at the same point,
n — 1 steps to the right and + 1 steps down.

Every bad path can be modified this way, and every path frorotiigénal starting point to this
pointn — 1 to the right andr + 1 down corresponds to exactly one bad path. Thus the number of
bad paths is the total number of routes in a grid thétis- 1) by (n + 1).

There are(m;rk) paths through ah x m grid. Thus the total number of paths through the n
grid is (") and the total number of bad paths(;gfl). ThusC,, thent™ Catalan number, or the
total number of diagonal-avoiding paths throughianr n grid, is given by:

o= () -2 = () - () = ()

170 see this, remember that there aresteps down that need to be taken alongkhel possible paths going down. Thus
the problem reduces to counting the number of ways of puttingpjects ink + 1 boxes which is(m;k).

9



3 Counting Mountain Ranges—Method 1

A very similar argument can be made as in the previous seiftiva use the interpretation of the
Catalan numbers based on the count of mountain ranges agheedo Section 1.2. In that section,
we are seeking arrangementsofip-strokes and down-strokes that form valid mountain ranges.

If we completely ignore whether the path is valid or not, weéhaup-strokes that we can choose
from a collection o2n available slots. In other words, ignoring path validity, are simply asking
how many ways you can rearrange a collectiom afp-strokes ane down-strokes. The answer is
clearly (*").

Now we have to subtract off the bad paths. Every bad path geles/tihe horizon for the first
time at some point, so from that point on, reverse all theksse-replace up-strokes with down-
strokes and vice-versa. Itis clear that the new paths Williald up 2 steps above the horizon, since
they consist of 4+ 1 up-strokes and — 1 down-strokes. Conversely, every path that ends two steps
above the horizon must be of this form, so it corresponds &ztixone bad path.

How many such bad paths are there? The same number as thevaysréo choose the + 1
up-strokes from among tha total strokes, 0( n

n+1) :
Thus the count of valid mountain ranges 4y, is given by exactly the same formula:

= () (2) = () -2 () = )

4 Counting Mountain Ranges—Method 2

Here is a different way to analyze the mountain problem. Tihig, imagine that we begin with
n + 1 up-strokes and only down-strokes—we add an extra up-stroke to our collection.

First we solve the problem: How any arrangements can be mattese2n + 1 symbols,
without worrying about whether they form a “valid” mountaenge (whatever that means with an
unbalanced number of up-strokes and down-strokes). @Jefthe ordering does not matter, there
are (*"1) ways to do this.

One thing is certain, however. No matter how they are arrdntpeey mountain range will be
one unit higher at the end, since we take- 1 steps up and only steps down.

Let’s look at a specific example with = 3 (and2n + 1 = 7): up up down up up down down
In Figure 4, we have arranged this sequence over and overandan see that evefysteps, the
mountain range is one unit higher.

Figure 9: Growing Mountains

Since it is a repeating pattern, it's clear that we can dratvaaght line below it that touches the
bottom-most points of the growing mountain range.

10



In our example, this touching line seems to hit only once penmete set of strokes, and we
will show that this will always be the case, for any unbalahoember of up-strokes and down-
strokes.

We can draw our mountain range on a grid, and it’s clear treashbpe of the line i3 /(2n + 1)

(it goes upl unit in every complete cycle of the pattern &f + 1 strokes. But lines with slope
1/(2n + 1) can only hit lattice points ever3n + 1 units, so there is exactly one touching in each
complete cycle.

If you have a series dfn + 1 strokes, you can cycle that around2e + 1 arrangements. For
example, the arrangement\ /\ can be cycled to four other arrangementsy/\/, \/\//, /\//\
and\//\/. That means the complete set of arrangements can be divittedduivalence classes of
size2n + 1, where two arrangements are equivalent if they are cyclesiorgs of each other.

If we consider the version among these+ 1 cycles, the only one that yields a valid mountain
range is the one that begins at the low point of2Zhet 1 arrangement. Thus, to get a count of valid
mountain ranges with up-strokes and down-strokes, we need to divide our counef+ 1 stroke
arrangements byn + 1:

1 (2n—|—1) 1 2n+1)! 1 (2n)! 1 (2n)

:2n—|—1 n .

n

- 2n+1 nlln+1)! n+1 nlnl n+l

Finally, note that when the line is drawn that touches thédnoedge of the range of mountains
with one more “up” than “down”, the first steps after the tounchpoints are two “ups”, since an
“up-down” would immediately dip below the line. It should bkear that if one of the two initial
“up” moves is removed, the resulting series will stay aboherdzontal line.

5 Generating Function Solution
Using the formulas 1 through 5 in Section 2, we can obtain gili@xformula for the Catalan

numbers(,, using the technique known as generating functions.
We begin by defining a functiofi(z) that contains all of the Catalan numbers:

f(2)=Co+Crz4Co2? + C32° +--- = ZC’izi.
1=0

If we multiply f(z) by itself to obtainf(z)]?, the first few terms look like this:
[f(Z)]2 = CyCy + (0100 + C()Ol)z + (OQC() + C1C1 + OOCQ)ZQ + e

The coefficients for the powers ofare the same as those for the Catalan numbers obtained in
equations 1 through 5:

[f(2)]? = Cy + Coz + C32° + Cy2® + - - -. (6)
We can convert Equation 6 back fgz) if we multiply it by z and add”), so we obtain:
f(z) = Co+2[f ()% (7

Equation 7 is just a quadratic equationfitz) which we can solve using the quadratic formula.
In a more familiar form, we can rewrite it asjf> — f + Cy = 0. This is the same as the quadratic

11



equation:af? + bf + c = 0, wherea = z, b = —1, andc = Cy. Plug into the quadratic formula

and we obtain:
fle) =1 ®)
z
Notice that we have used the sign in place of the usuat sign in the quadratic formula. We
know thatf(0) = Cy = 1, so if we replaced the- symbol with+, asz — 0, f(z) — oc.
To expandf(z) we will just use the binomial formula on

V1I—4z = (1—42)Y2

If you are not familiar with the use of the binomial formulakwfractional exponents, don’t worry—
it is exactly the same, except that it never terminates.

Let’s look at the binomial formula for an integer exponerd st do the same calculation for a
fraction. If n is an integer, the binomial formula gives:

n(n — 1)an—2b2 + n(n —1)(n —2)

—_— n_33 e
2.1 32.1 ¢ A

(a+b)"=a"+ %a"‘lbl +

If n is an integer, eventually the numerator is going to havera tdrthe form(n — n), so that

term and all those beyond it will be zero. sifis not an integer, and it i5/2 in our example, the
numerators will pass zero and continue. Here are the firstéaws of the expansion ¢f — 42)'/2:

1 1 1 1 1 3
. /2 _ _(l) (5)(_5) 2_(5)(_5)(_5) 3
(1—4z2) 1 . 4z + 5.1 (42) o (42)° +
B (=3)(=3)(=3) v G(=3)(=)(=3)(=3) ,.»s
1-3-2-1 (42)" = 5.4.3-2-1 (42)" +---
We can get rid of many powers 8fand combine things to obtain:
1 1 3-1 5-3-1 7-5-3-1 5
(1—42)1/2:1—ﬁ22—5422—T823— 1 1624—T322°—--- (9)
From Equations 9 and 8:
1 3-1 5-3-1 7-5-3-1
f(z)=1+52z+T422+ 1 823 + 3 162* + - - (10)

The terms that look lik& - 5 - 3 - 1 are a bit troublesome. They are like factorials, except Hrey
missing the even numbers. But notice that2! = 4.2, that23-3! = 6-4-2,that2*-4! = 8.6-4-2,
etcetera. Thug7-5-3- 1) - 244! = 8!. If we apply this idea to Equation 10 we can obtain:

=1+ ) )+ L) e (3)+

From this we can conclude that tfi& Catalan number is given by the formula
C — - 1 <21>
1+1\ ¢

12




6 Catalan’s Triangle

In this section we will consider a triangle somewhat akinasdal’s triangle that will provide a nice
method to generate the Catalan numbers.

1 6 20 48 90 132 132

1.5 14 28 42 42
14 9 14 14

.1 03 .5 .5

01 02 02

01 01

1

Ignoring the dots for a moment, the rule is simple: As we buijideach row contains one more
number than the previous. The first row consists of a sihgf@nce a row is complete construct the
next row up beginning over the left-most element of the roloweand the number placed there is
the sum of the number directly below it and the number diyectithe left. If there is no number in
the slot below or in the slot to the left, just use zero. To make you understand the rule, construct
the eighth row and make sure that you obtdifiz, 27, 75, 165, 297, 429, 429.

Notice that the numbers running up the diagonal of this tfient, 1,2, 5,14, 42,132, are the
Catalan numbers. Why is this? You may wish to experimentla liefore reading on.

In Section 1.3 we saw that the number of diagonal-avoidirnthgp& counted by the Catalan
numbers. For any point in the triangle above, and considepthblem of counting the number of
paths from that point to the bottom-most point where the atilgwable moves are one step to the
left or one step down, where you are constrained to remaih@fattice points of the triangle.

If we begin at the lowest one, we are already there, so themalysone path; namely, the empty
path: don’t do anything and you're done. The tive in the next row make sense, too, since there’s
only one path to the bottom from each. (One of the paths is tejgsdong and one is only one step
long, but we are not counting the number of steps, but the reunmbpaths, and there is only one
path from each of the points.)

Now start with any other point in the triangle. If that poistan the left of the row, the only
possible path is straight down, so there’s only one patthdfdoint is on the right-most end of the
row, the only move you can make is to the left, so there aredheesnumber of paths from there to
the bottom as there are from the point immediately to your IEbr any other point, it is possible
to make the initial move to the left or down, in which case thenber of paths to the bottom is the
sum of the number of paths to the bottom from the point belowatd from the point immediately
to your left. Notice that this is exactly the same rule we usegkenerate the numbers in the grid, so
every number in the triangle represents the number of pathe hottom from the pointimmediately
below and to the left of that number.

The paths that start on the diagonal are the paths we courtied we were generating the
Catalan numbers, so the diagonal numbers are the Cataldmensim

13



6.1 Enumerating all Diagonal-Avoiding Paths

A very interesting observation that was pointed out to me airi€k Labarque is the following.
Suppose we'd like to number all the diagonal-avoiding paghsng the empty path numbér The
unique path on the triangle with three dots is numbdretie two paths on the next larger triangle
with six dots get numberzand3, and so on.

The enumeration can be done by drawing the path as in the salioptration below:

1 6 20 48 90 132 132
14 28 42 42

9 14 14

2

1 5
1 4
1 3|5 5
1 2
1)1

]
[

The number to assign to each path is the sum of the numbers and¢o the right of the path;
inthiscasel +1+4+2+5+ 5= 14.

It is not too hard to prove that every path from a diagonal ptirthe bottom-most point has a
unique sum of the grid numbers below it and that there are ndedmumbers, assuming that the
null path is assigned number

First notice a few things. If we add all the numbers in a patéicrow, their sum is the Catalan
number on the right end of the row above. For example, in theicow up, we havé +3+5+5 =
14 which is the right-most number in the fifth row up. This makesse, since if we consider paths
starting on the row above, we will move left at least once,dmrhaps all the way to the left before
taking our first step down. When we take the first downward, stepnumber below is the number
of ways to complete a path where that is the first step down. stine of all of them, or in other
words, the sum of the numbers in the row, is the total numbpatifs, which is the Catalan number.

1 3 5 i~|3 5 5 1 3.5 5 1 3|5 5
12 2 12 2 _ 1.2 2 _ T.2 2
1 1 1 1 11 11

1 1 1 1

To show why the enumeration works, let's assume that all #Htbgpare correctly enumerated
for the “mountain range paths” for diagonals of length, 2 and3. The empty path is assigned the
number0, the unique path that takes one step on the diagonal is asKigthe next two are assigned
2 and3, and the next five are assignéd, 6, 7 and8.

We now would like to make sure that the next fourteen pathsaasigned to the numbers
9,10,...,22. If we begin by looking at the path that encloses all the numslas in the figure
above, the top row sums fial, and that added to the numbers below that susyti@lds 22.
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We can obtain any other path by doing successive “folding#fi® original path, removing one
number at a time and always folding from upper left to lowghti In the figure above, three steps
of unfolding are illustrated, and the dotted paths show th&éan of each fold.

If any folding occurs, the first one has to be from the uppdrdefner. This produces a path
with a 1 removed from below it, and it eliminates exactly one paththés path will be assigned
22 — 1 = 21. In the illustration, the next fold eliminates three pofsipaths. Remember that the
3 that was exposed refers to the number of paths from the dts tower left to the bottom. When
we do that fold, since we've now skipped three paths, we neadbtract from 21, yielding path
numberls, et cetera. You can also see that when the path is completdld down to the minimum
path covering the four diagonal steps, the only remaininglmers ard + 1 + 2 + 5 = 9: the first
available number after the 1, .. ., 8 that were used to enumerate all the shorter paths.

Following is a list of all the paths from numbérto number22. The first one (or zeroth one,
if you prefer), of course is the empty path. It is a worthwlalercise to check that the sum of the
numbers under at least a few of these paths is equal to thenpather.

21 ’ 22

7 More Examples Without Proof

Here are some more counting problems whose answer is “ttadaDatumbers”. You can use these
as exercises.

7.1 Permutations avoiding123

A permutation ofn numbers consists of a rearrangement of theseimbers. Without any con-
straints, there are! permutations. To completely define a permutation, all teatguired is an
n-tuple of the number§1, 2, . . ., n} with the following interpretation: The-tuple (p1, p2, ..., pn)
is the permutation that takédsto p;, 2 to ps, ...,n to p,,. All the p; in such am-tuple are distinct.
For example, here is a list of all the permutations of the{$e2, 3}:

(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2), (3,2, 1). (11)
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We will say that a permutation “avoid®3” if in the n-tuple as described above, it is impossible
to find three numbers j andk such that < j < k andp; < p; < pg. In other words, thex-tuple
contains no subsequence of length three that is increasorgexampleg4, 1, 2, 3) because you can
find 1, 2 and3 in order. The permutatiof2, 1, 3,4) fails because of the subsequeicg and4
(and also the subsequenice3 and4). As an example of one that works, the permutation, 3, 2)
avoids123.

By definition, all the permutations df, 1 or 2 elements avoid 23, since we can't find three
different numbers in the-tuples. There aré, 1 and2 such permutations. Fer = 3, there is only
one permutation from the list in List 11 that failg, 2, 3), leaving5 permutations that avoitR3.

Forn = 4, there ar@4 permutations]4 of which avoid123 and10 of which that do not. Here
is a list of thel4:

(1747372)’(2717473)’(2747173)’(2747371)7 (3717472)7
(3727174)’(372747 1)’(3747172)’(3747271)7 (4717372)7
(4,2,1,3),(4,2,3,1),(4,3,1,2),(4,3,2,1).

Here is a list of the 0 that do not avoid 23:

(17 27 374)’ (17 27 47 3)’ (17 37 274)’ (17 37 47 2)7 (17 47 27 3)7
(2,1,3,4),(2,3,1,4),(2,3,4,1),(3,1,2,4), (4,1,2,3).

The number of permutations afelements that avoiti23 is C,,.

7.2 Tiling with Rectangles

Given a “triangular” region composed afblocks on a side, in how many different ways can the
region be tiled with exactly: rectangles? The illustration below shows thatfor= 4 there are
exactlyCy = 14 tilings.

Lo P (e [ P [
||T||j|j_‘|_’—‘l77

BB LB
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