Poncelet’s Theorem

by
ROBERT L. BRYANT

§0. Statement of the Theorem

First, some definitions about polygons:

DEFINITION 1: An n-gon P is a sequence of n distinct points (po,...,pnp—1) in the
plane, called the wvertices of P. For convenience, set p, = pg. The line segments p;p;11
fori =0,1,...,n—1 are called the sides of P.

REMARK: To describe an n-gon P, what we care about is the cyclic order of the
points p;. Thus,

P = (po,p1,p2,p3) =~ (P1,P2,P3,P0) = (Po, P3,D2,P1),

but (po, p1,p2,p3) % (po, P2, p1,p3). (They don’t have the same set of sides.)
DEFINITION 2: P is inscribed in a curve C' if its vertices p; all lie on C'.

DEFINITION 3: P is circumscribed about a curve C' if its sides p;p; 11 are tangent to C'.

Poncelet’s Theorem: Suppose that Fj is an ellipse in the plane and F; is another ellipse
that contains Fy in its interior. If there is one n-gon P that is both inscribed in E; and
circumscribed about Ey, then there is an infinite number of such n-gons. (In fact, any
point on Ej is a vertex of exactly one such n-gon.)

Simple case: Let’s look at an easy case first: Two concentric circles:

Ey : 24yt =1 and by 4yt =0 r>1.
1. What value of r will make it possible to inscribe a 3-gon (i.e., a triangle) in E; in such
a way that it will be circumscribed about Ey? What can you say about these triangles?
2. What value of r will make it possible to inscribe a 4-gon (i.e., a quadrilateral) in E;
in such a way that it will be circumscribed about Ey? What can you say about these

quadrilaterals?

3. What value of r will make it possible to inscribe a 5-gon in Ej in such a way that it
will be circumscribed about Ey? Is there only one value of r that will work?



4. Can you describe the value(s) of r that you’d need to have an n-gon inscribed in E;
and circumscribed about Ey? Do the various values have any relation with each other?
(Hint: Complex numbers can be useful here, especially DeMoivre’s Formula.)

Slightly more complicated case: Suppose Ej is the unit circle, and FE; is given as
follows

Ey: 2?4y =1 and Ey: —+=5=1, r>1
where a,b > 1.

5. Assuming Poncelet’s Theorem, what relationship between a and b will allow a 3-gon to
be inscribed in F; and circumscribed about Fy? (Check that your answer agrees with the
result of the first exercise when a =b =1 > 1.)

6. Assuming Poncelet’s Theorem, what relationship between a and b will allow a 4-gon to
be inscribed in F; and circumscribed about Fy? (Check that your answer agrees with the
result of the second exercise when a =b=1r > 1.)

7. (Harder) Assuming Poncelet’s Theorem, what relationship between a and b will allow
a H-gon to be inscribed in F; and circumscribed about Fy?

§1. On quadratic curves, especially ellipses

Consider a polynomial of degree 2 in the variables z and y:
Q(r,y) = Ax* +2Bry+ Cy* +2Dx +2Ey + F.

To avoid degenerate cases, assume that not all of A, B, and C are zero. The curve X in
the plane defined by the equation Q(x,y) = 0 is said to be a curve of the second degree.

If A\ is a nonzero number, then Q(z,y) = 0 if and only if A\Q(z,y) = 0, so we can
replace ) by MA@ without changing the curve X.

It’s not always easy to see what X looks like, but can help to normalize the curve by
translating, rotating, and scaling.

TRANSLATION. If we set (z,y) = (Z + p,y + ¢) for some point (p, q), we can write

0=Q(z,9) =QZ +p,7+q) = Q(z,7)

where ) . . .
Q(z,y) = Az* + 2By +Cy* +2D &+ 2E5 + F.
for some new constants D, £, and F. This is called ‘translating to new coordinates’.

We say that (p,q) is the center of X if D = E = 0. (You should think of this as
‘completing the square’, but in two variables instead of one.)
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Example: Let Q = 2% + xy + y?> — 42 — 5y. Then
2’ +zy 4+ y? — 4z — by = (Z+1)° + (Z+1)(7+2) + (¥+2)* — 4(z+1) — 5(y+2)
= +zg+y - T,
so the (a?) center of this curve Q(z,y) = 01is (p,q) = (1,2).
8. Show that if AC — B? # 0, then there always is a center and it is unique.

ROTATION. One can also rotate coordinates by an angle
xr= cosfzx+sinfy,

y = —sinfx + cosfy,

9. Show that there is always an angle 6 so that the rotated polynomial

Q(z,y) = Q(cos@T +sinfy, —sinfz+cosfy ) =Q(Z,7)
has B = 0. Check that A+ C = A+ C and that AC — B2 = AC — B2.

REMARK: Translation and rotation don’t change what a quadratic curve X ‘looks
like’, just where it is positioned in the plane.

When AC — B? # 0, by translating and rotating, we can get down to curves described
by equations of the form

Qz,y) = Az +Cy*> + F =0,

where A and C' are non-zero. When A and C have the same sign and F' has the opposite
sign, we can divide by —F' and get down to the case

2 yQ

x
Q(z,y) =2t 1=0

where a and b are positive numbers. Of course, when a = b this is a circle of radius a.

Otherwise, this is an ellipse.

SCALING. We can even get down to a circle if we are willing to scale x and y
independently:
r=ax and y=>0by,

so that

AFFINE COORDINATE CHANGES: Translation, Rotation, and Scaling are special cases
of the so-called affine coordinate changes, the most general of which is
r=aZ+by+p,

B i where ad — be # 0.
y=cx+dy+q,



10. Why do you think one needs the condition ad — bc # 07

11. Explain why affine changes take linear polynomials L(z,y) = Dz + Ey + F and
quadratic polynomials Q(z,y) = Ax? +2Bxy + Cy? + 2D x + 2E y + F into linear poly-
nomials and quadratic polynomials, respectively. (In particular, affine changes take lines
to lines and ellipses to ellipses. Moreover, affine changes are closed under composition and
inverse.)

We are going to need one more basic fact about affine changes of coordinates:

Area change rule: The area of a figure (for example, a triangle) measured in zy-
coordinates is |ac—bd| times its area measured in Zy-coordinates.

REMARK: The proof of the area change rule relies on the fact that the area of the
parallelogram based at (0,0) generated by the two vectors (a,b) and (¢, d) is |ad—bc|.

Also, note that, ad—bc > 0if (0,0), (a,b), and (¢, d) is a counterclockwise-enumerated
triangle, while ad—bc < 0 if (0,0), (a,b), and (¢, d) is a clockwise-enumerated triangle.

TANGENT LINES: A line meets an ellipse in at most 2 points.

12. Prove this. (Hint: You can do this by brute force, but, using affine changes of
coordinates, it’s enough to show it in the case when the ellipse is the circle 22 +4?> -1 =0
and the line is  — r = 0 for some r > 0. Why?)

A line that meets an ellipse in exactly one point is said to be tangent to the ellipse.

Ezample: The line cos§x +sinfy — 1 = 0 is tangent to the circle 22 +y? — 1 = 0 at the
point (cos @, sin ).

13. If (zo,yo) lies on the ellipse
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show that the line
Zo Yo

¥x+b—2y—1:o

is tangent to the ellipse at the point (xg,yo). (Hint: there’s more than one way to do this.
One way is to parametrize the line in the form (x,y) = (zo + a®yot, yo — b*zot) and check
that ¢t = 0 is the only time this point lies on the ellipse. There is a slicker way, though.)

14. Show that if a point p lies outside an ellipse E, then there are exactly two lines
tangent to E that pass through p. (Hint: Again, you can do this by brute force, but,
using affine changes of coordinates, it’s enough to show this in the case that E is the
circle 22 + 42 — 1 = 0 and p = (r,0) where r > 1. Why? In this special case, where are
the two points of tangency?)



15. (IMPORTANT!) Show that if F is an ellipse with center C, X is a point outside E,
and P; and P, are the two points on E whose tangent lines to F pass through X, then
the two triangles (C, Py, X) and (C, P2, X') have the same area. (Hint: First, consider the
case when F is a circle!) (Note, though, that these two triangles are oppositely oriented!)

62. Projective transformations

This section is harder than the earlier sections, but we need the Normalization Theo-
rem at the end to reduce Poncelet’s Theorem to the simpler case of a pair of ellipses with
a common center.

It turns out that affine changes of coordinates are not the only transformations that
take lines to lines and ellipses to ellipses.

PROJECTIVE COORDINATE CHANGES. Consider a set of 9 constants ai,...,a9 and
write B B
. a1 +asy + as
= — — a; az a
07T + a5y +ay where det al a2 a3 #0
asT +asy + as 4 5 6 )
= ar ag ag

a7§;+agg+a9’

The condition that the determinant not vanish is what you need to be sure that you can
solve the above formulae for  and y. In fact, if

by by b3 a1 as as
B=1bs by bg is the inverse matrix of A= | a4 a5 ag
by bs by ar ag ag

then
b1 x4+ byy + b3

b7x+bgy+bg’
byx + bsy + bg
b7x+bgy+bg’

Kl
Il

N
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16. Explain why a projective coordinate change as above takes lines to lines, except for
the line by x + bgy + bg = 0 (which doesn’t seem to have anywhere to go). (Hint: Show
that B B B
Dx+FEy+ F
a7 T +agy + ag

Dx+Fy+F =

for some constants D, E, F. Why does this do it? What goes wrong when D x+Ey+F =
brx +bgy + bg?



17. Explain why a projective coordinate change as above takes an ellipse E to an ellipse F,
as long as E doesn’t meet the line by x + bsy + bg = 0. (Question: What happens if E
meets this line in one point, or two points?) Explain also why such a coordinate change
takes lines tangent to such an E to lines tangent to F.

The reason we need projective transformations is the following result, which is proved
using techniques from Linear Algebra (usually a second-year college course).

Projective center alignment: If Fy and E; are ellipses, with Ej inside F7, then there
is a projective change that takes Fy (respectively, E1) to an ellipse Eg (respectively, F)
such that Ey and E7 have the same center C.

Once we know this, proving Poncelet’s Theorem reduces to checking the cases

2 2
Eo: a?+4y2—1=0, E 2—2+Z—2—1:o, (a,b > 1).

63. Angle measure and other measures

The thing that made Poncelet’s Theorem so easy to prove for concentric circles is
that all the line segments with endpoints on the outer circle that are tangent to the inner
circle have the same length and subtend the same (radian) measure of arc. All you have
to do is determine whether this angle is a rational multiple of 27, and you’ll know whether
the inscribing/circumscribing polygonal path you draw starting at any point will close. It
clearly doesn’t depend on the point where you start, which is exactly Poncelet’s Theorem
in this case.

18. The unit circle 2 + y? — 1 = 0 is parametrized by
(x,y) = (cos @, sinf).
Implicit differentiation yields x dx 4+ y dy = 0, and this can be written in the form

dy__d_:z:
T

While neither of these expressions is defined everywhere on the circle (because z and vy
each vanish at two points), show that each ratio (where defined) is df, which is defined
everywhere on the circle, and integrating it between two points on the circle gives the total
angle between the two points.

Now, in the general case, the angle subtended by the line segments that are inscribed

in £ and are tangent to Ej is not independent of which segment you choose, so you can’t
use angle measure to prove Poncelet’s Theorem. However (and this is the amazing thing),
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it turns out that there is a sort of ‘generalized’ angle measure that is the same for all such
line segments. This angle measure is a little hard to see, but we are going to describe it
and show that it works.

It is not so surprising that other measures of angle are useful. A famous example
is one that comes from Kepler’s Laws: Remember that Kepler’s First Law says that a
planet moves on an ellipse, with the Sun at its focus. Kepler’s Second Law says that a line
segment joining the planet to the Sun sweeps out equal areas in equal times. What this
means is that, if you wanted to mark out equal ‘months’ on a planetary orbit, you wouldn’t
mark them out with equal angles, nor would you mark them out with equal distances along
the orbit. Instead, the measure you would use would be to divide so that the ‘elliptical pie
wedges’ have equal area. In other words, you’d measure according to ‘elliptical pie wedge
area’.

19. In polar coordinates (r,6), an ellipse with a focus at the origin takes the form

a(l1—e?)
(1 —€cosh)’

where € is the eccentricity. The area swept out between two values of 4 is

0 2 2\2 0

1 1—¢%) 1 db
A g l 2 g L\/ _
/,90 >r(0)" df 2 9, (1—€cosb)?

Re-express this in rectangular coordinates and explain what the ‘elliptical pie wedge area’
represents geometrically.

What we are going to see is that, by distorting the natural angular measure on an
ellipse by the right geometric quantity, we can find the right ‘generalized angle’ measure
that will make Poncelet’s Theorem easy.

4. The proof

Here is a different way to think about Poncelet’s Theorem: Let Ey and E; be ellipses,
with Ey contained in the interior of F;. For any point gy on Ey, let pg be the point on E;
where the counterclockwise tangent ray to Ey at qp meets the outer ellipse F;. Since pg
is exterior to Fj, it lies on two tangents to F7. One of those is the tangent at ¢y and the
other is tangent at another point ¢g; on Fy. Now continue this by induction: For each ¢;
(1 > 0), let p; be the point on E; where the counterclockwise tangent ray at ¢; to Fp
meets F; and let ¢;11 be the unique point on Ejy so that the two tangents to Ey that pass
through p; are tangent to Ey at ¢; and ¢;1.

Poncelet’s Theorem: If there is some point gy on Ey and an integer n > 1 so that ¢, = qo,
then for any point ¢ on Ey, one has ¢/, = (.

In other words, the polygonal path inscribed in F; and circumscribed about Ejy either
closes in n steps for all starting points or does not close in n steps for any starting point.
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1. The first step in the proof is to use projective geometry to reduce to the case where
the two ellipses are presented in standard form as

Ey={(z,y)|2*+y* =1}
By ={(z,w)|2*/a® + w*/b* =1}

for some constants a,b > 1. This is proved by showing that the corresponding quadratic
forms (in 3 variables) can be simultaneously diagonalized. (Of course, this depends on the
fact that the two ellipses are disjoint, with one contained in the other.)

2. The second step is to consider the set S consisting of points (z,y,2,w) € R?
where (z,y) lies on Ey while (z,w) lies both on E; and on the tangent line to Ey at (z,y).
In other words, the set S is defined by the equations

2 2
9 z w

—1:¥+——1:x2+yw—120.

22 +y 12

Now, S is the disjoint union of two circles:

Sy ={(z,y,2,w) EE‘xw—yz>O}
S_ = {(x,y,z,w) EE‘xw—yz<O}

Note that if g9 = (z,y), then py = (2, w) where (z,y, z,w) lies in S;.. Moreover, ¢1 = (u,v)
where (u, v, z,w) lies in S_. In fact, the projection of S onto either Ey or E; is a (trivial)
double cover of that ellipse.

Observe that there is a unique map 7 : S+ — S+ with the property that 7(z,y, z, w) =
(z,y,Z,w) and that there is also a unique map o : Si — St that has the property
that o(x,y,z,w) = (Z,7,2z,w). In other words, 7 is the deck transformation for (z,y) :
S — Ey while ¢ is the deck transformation for (z,w) : S — Ej.

The formulae for 7 and o can be found as follows: Let (z,y, z, w) lie in S. The tangent
line to Fy at (x,y) passes through (z,w) and is parallel to the vector (y, —x), so it follows
that, if 7(z,y, z,w) = (x,y, Z,w), then there must be a value ¢ so that

zZ=2z+1y, w=w — tx.

Substituting these relations into the equation (2)?/a® + (w)?/b* = 1 yields a quadratic
equation for ¢ that has ¢t = 0 as a root, so the other root must be a rational expression in
the coefficients. In fact, computation gives

(zy/a® — wz/b)

T e

Thus, 7 is expressed rationally in terms of the functions x, y, z, and w on S.
Similarly, if o(z,y,2,w) = (Z,y,z,w), the line through (x,y) and (z,y) must be
orthogonal to the vector (z,w), so there must be a value s so that

T =+ sw, Yy =1y — Sz.



Substituting these relations into the equation (z)? + (7)? = 1 yields a quadratic equation
for s that has s = 0 as a root, so the other root must be a rational expression in the
coefficients. Computation gives

s _olzw—yz)
(22 + w?)
Thus, o is expressed rationally in terms of the functions z, y, z, and w on S.
To prepare for the next step, observe that the function xw — yz is odd with respect
to o, i.e., that
Tw —yz = —(zw — yz).

This says that the area of the oriented triangle with vertices (0,0), (z,y), and (z,w) is the
negative of the area of the oriented triangle with vertices (0,0), (Z,y), and (z,w), a fact
that is geometrically obvious.

Correspondingly, for 7, one finds

zy/a® — wz/b* = —(2y/a® — wx/b?).

This can be checked by hand, but it also has a natural interpretation in terms of the dual
ellipse E; defined by the equation a? 22 + b? w? — 1 = 0.

20. Figure out this geometric interpretation by considering the two tangent lines to E}
that pass through (z,y). (Hint: You can find them easily since you know the points (z, w)
and (zZ,w) on Ej.)

Something like this might have been expected, since (xw — yz) is the expression
whose sign distinguishes the components Sy and S_. One might also note that the func-
tion zy/a? — wx/b? does not vanish on S (do you see why not?) and that it has opposite
signs on the two components.

3. The third step involves investigating the differentials on S. Differentiating the
defining equations of S yields three differential relations, which can be written together as

T oy 0 0 ZZ 8
2 2 _

2 75)) Z{Ba w/b - 1= 1o

Y dw 0

It is easy to check that the coefficient matrix has rank 3 at every point of S, which implies,
by the Implicit Function Theorem, that S is a smoothly embedded curve in R*. Moreover,
it implies that there are relations of the form

dx —dy —b?dz a® dw

y(zy/a? —wx/b?)  z(zy/a® —wx/b?)  w(zw —yz) z(zw —yz)’

Now, you may object that these differential expressions are not well-defined every-
where since, after all, x, y, z, and w each vanish somewhere on S. However, notice that
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they do not all simultaneously vanish and hence, at every point of S, at least one of these
differential expressions is well-defined and smooth. In other words, there is a well-defined
1-form df on S that equals each of these four expressions on the open set where that
expression is well-defined. Moreover, by the implicit function theorem, this 1-form df is
nowhere vanishing.

Now, because 7(z,vy, z,w) = (x,y, Z,w), and because the expression (zy/a® — wz/b?)
is odd with respect to 7, it follows from the first two expressions for df that df is odd with
respect to 7, i.e., that 7%(df) = —df. Similarly, because o(z,y,z,w) = (Z,y, 2, w) and
because (zw — yz) is odd with respect to o, it follows that df is odd with respect to o,
ie., o*(df) = —db.

In particular, it follows that df is invariant under 7 oo and o o 7 (which is the inverse
of Too). In other words, if we choose to parametrize E (say) with respect to df, then oot
is just rotation by a fixed amount «.

More precisely, orient S so that df is a positive 1-form and define

L:/ ao.
Sy

Then we can define a mapping 6 : Sy — R/(L - Z) by setting

(z,,2,w)
O(z,y,z,w) = (/ d9> mod L.
(1,0,2z0,w0)
where (1,0, zp, wo) lies on E4. This identifies S} with the circle in such a way that o o7
is carried over into translation by some a in R/(L - Z).
Now, the condition of the polygon closing in n steps is exactly the condition that

na =0in R/(L-Z). Note that this doesn’t depend on the starting point go, so Poncelet’s
Theorem is proved.
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