
Berkeley Math Circle
Monthly Contest 8 – Solutions

1. Let x and y be positive integers. Can x2 + 2y and y2 + 2x both be squares?

Solution. The answer is no. Because of the symmetry between x and y, we can assume that x ≥ y. Then

x2 < x2 + 2y ≤ x2 + 2x < x2 + 2x+ 1 = (x+ 1)2.

Thus x2 + 2y, which lies between two consecutive squares, cannot be a square.

2. On a 5× 5 chessboard, a king moves according to the following rules:

• It can move one square at a time, horizontally, vertically, or diagonally. (These are the usual moves of the king in chess.)

• It can move in each of the eight allowable directions at most three times in its entire route.

The king can start at any square. Determine

(a) whether the king can visit every square;

(b) whether the king can visit every square except the center.

Solution.

(a) The answer is no. To visit all 25 squares, the king must make his maximum of
24 moves and thus must move in each of the eight allowable directions exactly
3 times. Three of these directions (or 9 moves) take the king from a row to
the next higher row; three directions (or 9 moves) go to the next lower row,
and the remaining two directions and six moves keep the king in the same row.
Because the numbers of upward and downward moves are equal, the king must
start and end in the same row. Similarly, he must start and end in the same
column and thus in the same square. Thus the 25th square visited will repeat
the first and at least one square will be missed.

(b) The answer is yes. A solution is shown. Trickily, all known solutions are
completely asymmetric.
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3. Define the digitlength of a positive integer to be the total number of letters used in spelling its digits. For example, since “two
zero one one” has a total of 13 letters, the digitlength of 2011 is 13. We begin at any positive integer and repeatedly take the
digitlength. Show that after some number of steps, we must arrive at the number 4.

Solution. We first claim that if a number has at least two digits, then the digitlength is less than the number itself. To see this,
note that any digit has at most five letters; thus a 2-digit number, which is at least 10, has digitlength at most 5 ·2 = 10; a 3-digit
number, which is at least 100, has digitlength at most 5 · 3 = 15; and so on. The highest possible digitlength increases at each
step by 5, while the lowest possible number having a given number of digits increases by more than 5. Thus the digitlength
will always be strictly less than the number unless the number and the digitlength are both 10, which does not happen since the
digitlength of 10 is 7.

When we repeatedly take the digitlength, the numbers keep decreasing as long as they have at least two digits. Since a sequence
of positive integers cannot decrease forever, we must eventually hit a 1-digit number. Then, we quickly reach 4 as shown by
the following diagram:
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4. Suppose 2011 light bulbs are arranged in a row. Each bulb has a button under it. Pressing the button will change the state of
the bulb above it (on to off or vice versa) and will also change the two neighboring bulbs, or the single neighboring bulb in
the case of one of the two end buttons. Is it always possible, regardless of the initial state of the bulbs, to turn them all off by
pressing some buttons?
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Solution. The answer is yes.

Let us number the bulbs 1 to 2011 from left to right. Given any initial state of the bulbs, let us begin by following this algorithm:
As long as at least one bulb other than bulb 1 is on, let n be the number of the rightmost lit bulb and push the button for bulb
n− 1. This will turn bulb n off and move the location of the rightmost lit bulb to the left. We may continue until either (1) all
bulbs are off or (2) only bulb 1 is on. In the former case, we are done; in the latter case we then push the buttons marked ×:

1 2 3 4 5 6 7 8 · · · 2007 2008 2009 2010 2011
× × × × × × × × ×

It is evident that every bulb will then change state twice, except the first, which will change state once. Thus all the bulbs will
be turned off.

5. Let ABC be a triangle with ∠ACB = 90◦. The inscribed circle of4ABC touches sides AC and BC at D and E, respectively.
On the circumscribed circle of4ABC, the midpoints of minor arcs AC and BC are respectively P and Q. Prove that D, E,
P , and Q are all collinear.

Solution. Let M be the midpoint of AC, let O be the circumcenter of4ABC, and let F be the point where the incircle touches
AB.

Note that4CDE is a right isosceles triangle and therefore ∠CDE = 45◦. Also, ∠PMD is right since OM ⊥ AC and OM
passes through P . Let us prove that4PMD is right isosceles:

PM = OP −OM =
AB −BC

2
=

AF + FB −BE − EC

2
=

AD −DC

2
=

AC − 2DC

2
= MC −DC = MD.

Therefore ∠PDM = 45◦ and

∠PDM + ∠MDE = ∠PDM + 180◦ − ∠CDE = 45◦ + 180◦ − 45◦ = 180◦.

This proves that P lies on line DE. Similarly, we can prove that Q lies on line DE.

6. Let f : Z→ Z be a function such that f(0) = 2 and for all integers x,

f(x+ 1) + f(x− 1) = f(x)f(1). (1)

Prove that for all integers x and y,
f(x+ y) + f(x− y) = f(x)f(y). (2)

Solution. Let us first prove the result for nonnegative y by strong induction on y. If y = 0, (2) becomes

f(x) + f(x) = f(x)f(0),

which is true since f(0) = 2, and if y = 1, (2) is the same as (1). Let us assume (2) for y = z − 1 and y = z and try to prove
it for y = z + 1. We have

f(x+ z − 1) + f(x− z + 1) = f(x)f(z − 1) (3)
f(x+ z) + f(x− z) = f(x)f(z) (4)

Multiplying (4) by f(1) and subtracting (3) yields

f(x+ z)f(1)− f(x+ z − 1) + f(x− z)f(1)− f(x− z + 1) = f(x)
[
f(z)f(1)− f(z − 1)

]
f(x+ z + 1) + f(x− z − 1) = f(x)f(z + 1)

as desired.

It remains to prove (2) for y < 0. If y = −z and z > 0, (2) becomes

f(x− z) + f(x+ z) = f(x)f(−z)

which would follow from (2) for y = z if f(−z) = f(z). To prove this, let x = 0 and y = z in (2), getting

f(z) + f(−z) = f(0)f(z)

f(z) + f(−z) = 2f(z)

f(−z) = f(z).
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7. Let n be a positive integer which is divisible by 5 and which can be written as the sum of two (not necessarily distinct) squares.
Prove that n can be written as the sum of two squares one of which is greater than or equal to four times the other.

Remark. A square is the square of any integer including zero.

Solution. Let n = a2 + b2, where a and b are nonnegative integers. Suppose that each of the squares a2 and b2 is less than 4
times the other, so

a < 2b and b < 2a.

Since a2 + b2 is divisible by 5, so is a2 + b2 − 5b2 = a2 − 4b2 = (a+ 2b)(a− 2b). Thus 5 divides either a+ 2b or a− 2b. If
5|a− 2b, then 5|2(a− 2b) + 5b = 2a+ b. Thus 5 divides either a+ 2b or 2a+ b, and by switching the labels a and b we may
assume that 5|a+ 2b.

Then
5 | 4(a+ 2b)− 5b = 4a+ 3b

and
5 | 3(a+ 2b)− 10b = 3a− 4b.

Note that (
4a+ 3b

5

)2

+

(
3a− 4b

5

)2

=
16a2 + 24ab+ 9b2 + 9a2 − 24ab+ 16b2

25

=
25a2 + 25b2

25
= a2 + b2 = n.

We claim that (
4a+ 3b

5

)2

≥ 4

(
3a− 4b

5

)2

which is equivalent to
4a+ 3b ≥ 2|3a− 4b|

which in turn is equivalent to the pair of inequalities

4a+ 3b ≥ 2(3a− 4b) and 4a+ 3b ≥ −2(3a− 4b).

Simplifying the first inequality yields 11b ≥ 2a which is true since 2b ≥ a. Simplifying the second inequality yields 10a ≥ 5b
which is true since 2a ≥ b.
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