
Berkeley Math Circle
Monthly Contest 3 – Solutions

1. You are given an m × n chocolate bar divided into 1 × 1 squares. You can break a piece of chocolate by splitting it into two
pieces along a straight line that does not cut through any of the 1× 1 squares. What is the minimum number of times you have
to break the bar in order to separate all the 1× 1 squares?

Solution. We note that the number of separate pieces of chocolate increases by 1 at each cut. We begin with 1 piece and
end with mn pieces, so we must make mn − 1 cuts. Thus mn − 1 is the minimum (and also the maximum) number of cuts
necessary to separate all the 1× 1 squares.

2. Let n be a positive integer. Prove that the nth prime number is greater than or equal to 2n− 1.

Solution. We can verify that the first prime, 2, is greater than 2 · 1− 1 = 1 and the second prime, 3, is equal to 2 · 2− 1. From
then, on, since all primes except 2 are odd, the difference between consecutive primes is at least 2. Therefore, for n ≥ 3,

nth prime ≥ 3 +

n− 2 differences︷ ︸︸ ︷
2 + 2 + · · ·+ 2

= 3 + 2(n− 2)
= 3 + 2n− 4
= 2n− 1.

3. Given the hypotenuse and the difference of the two legs of a right triangle, show how to reconstruct the triangle with ruler and
compass.
Solution. Here is one construction. Let AB = d be the segment representing the difference
of the two legs. Extend AB to C and raise a perpendicular BD to AC at B. Bisect angle
DBC to make ray BE with ∠EBC = 45◦. Now set the compass to the length c of the
hypotenuse and draw a circle k of radius c centered at A. Because the hypotenuse of a right
triangle is longer than the difference of the legs, c > AB, and thus k will intersect ray BE
at a point X . Drop a perpendicular XY from X to AC. Then 4AXY is a right triangle
with hypotenuse AX , and the difference AY −XY of the legs equals AY − BY = AB
since BXY is an isosceles right triangle.

If there were any other right triangle satisfying the same specifications, we could put it
in the position AX ′Y ′ with the smallest angle at A, the longer leg AY ′ on ray AC, and X ′

above Y ′. Then X ′ would lie on k because AX ′ = c; also, since AX ′ −X ′Y ′ = AB =
AY ′ − BY ′, BX ′Y ′ is an isosceles right triangle, and so X ′ lies on

−−→
BE. However, since

B is inside k, k and
−−→
BE can only intersect once. Thus X ′ = X and Y ′ = Y .

4. Show that each number in the sequence

49, 4489, 444889, 44448889, . . .

is a perfect square.

Solution. Let xn denote the nth number in the sequence. If we multiply xn by 9 by the standard method, we see that the
calculations 9 · 8 + 8 = 80 and 9 · 4 + 4 = 40 occur repeatedly:

n digits︷ ︸︸ ︷
44 · · · 44

n digits︷ ︸︸ ︷
88 · · · 89

× 9
4 00 · · · 04 00 · · · 01

The result is 9xn = 4 · 102n + 4 · 10n + 1 = (2 · 10n + 1)2, so

xn =
(

2 · 10n + 1
3

)2

.

To see that the expression in parentheses is an integer, we may note that the sum of the digits of the numerator 200 · · · 001 is 3,
a multiple of 3.
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5. Let {a1, a2, a3, . . .} be a sequence of real numbers such that for each n ≥ 1,

an+2 = an+1 + an.

Prove that for all n ≥ 2, the quantity
|a2

n − an−1an+1|

does not depend on n.

Solution. It suffices to prove that increasing n to n + 1 does not change the value, i.e. that for n ≥ 2,

|a2
n − an−1an+1| = |a2

n+1 − anan+2|.

We will prove more specifically that
a2

n − an−1an+1 = −(a2
n+1 − anan+2)

by transforming:

a2
n − an−1an+1

?= −(a2
n+1 − anan+2)

a2
n − an−1an+1

?= −a2
n+1 + anan+2

a2
n+1 − an−1an+1

?= anan+2 − a2
n

an+1(an+1 − an−1)
?= an(an+2 − an).

Using the given relation an+2 = an+1 + an, we see that the right side equals an · an+1. Replacing n by n − 1 in the given
relation gives an+1 = an + an−1, so the left side equals an+1 · an and thus the equality is true.

6. The inscribed circle of a triangle ABC touches the sides BC, CA, AB at D, E, and F respectively. Let X , Y , and Z be the
incenters of triangles AEF , BFD, and CDE, respectively. Prove that DX , EY , and CZ meet at one point.

Solution. Consider the midpoint M of arc EF on the incircle of 4ABC. Angles AFM and MFE are equal since they
intercept equal arcs FM and ME, and so M is on the bisector of ∠AFE. Similarly, M is on the bisector of ∠FEA, and
therefore M coincides with X . Moreover, angles FDX and XDE are equal since they intercept equal arcs FX and XE, and
so DX is the angle bisector of ∠D in 4DEF . Similarly, EY and FZ are the other two angle bisectors in 4DEF . But the
three angle bisectors in a triangle always meet!

7. Define a sequence a0, a1, a2, . . . in the following way: a0 = 0, and for n ≥ 0,

an+1 = an + 5an .

Let k be any positive integer. Prove that the remainders when a0, a1, . . . , a2k−1 are divided by 2k are all different.

Remark. It was intended to prove that a0, a1, . . . , a2k−1 (not just up to a2k−1 ) have different remainders. This typo does not
affect the truth of the problem, and we will prove the strengthened statement.

Solution. We begin with a simple numerical lemma.

Lemma 1. For all k ≥ 0, 52k − 1 is divisible by 2k+2.

Proof. By induction. For k = 0, the statement may be checked directly. To step from k to k + 1, we write

52k+1
− 1 =

(
52k
)2

− 1 =
(
52k

− 1
)(

52k

+ 1
)

and note that the first factor is divisible by 2k+2 by the induction hypothesis and the second factor is clearly divisible by 2, so
the product is divisible by 2k+3.

Now we turn to the main lemma of the proof.

Lemma 2. Fix k ≥ 0. For all r ≥ 0, the difference
ar+2k − ar

is divisible by 2k, not divisible by 2k+1, and independent of r mod 2k+2.
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Proof. By induction. For k = 0,
ar+1 − ar = 5ar

is clearly divisible by 1, not divisible by 2, and congruent to the constant value 1ar = 1 mod 4. Now assume that the statement
is true for k; we will prove it for k+1. We know that ar+2k−ar has the form 2k ·m for m odd. The difference ar+2k+1−ar+2k

has the same value, 2k ·m, to the modulus 2k+2. Therefore, mod 2k+2,

ar+2k+1 − ar = (ar+2k+1 − ar+2k) + (ar+2k − ar) ≡ 2k ·m + 2k ·m = 2k+1m,

so this difference is divisible by 2k+1 but not 2k+2.

It remains to prove that ar+2k+1 − ar is constant mod 2k+3, i.e. that 2k+3 divides the difference between two values for
consecutive values of r:

(ar+2k+1+1 − ar+1)− (ar+2k+1 − ar) = (ar+2k+1+1 − ar+2k+1)− (ar+1 − ar)
= 5a

r+2k+1 − 5ar

= 5ar (5a
r+2k+1−ar − 1).

We have already proved that ar+2k+1 − ar is divisible by 2k+1. By Lemma 1, 52k+1 ≡ 1 mod 2k+3, so 5a
r+2k+1−ar is also 1

mod 2k+3, completing the proof.

To solve the problem, suppose that r and s are two nonnegative integers such that 0 ≤ r < s ≤ 2k − 1 and ar ≡ as mod 2k.
Let s− r = 2` ·m, where m is odd. Mod 2`+1, at+2` − at ≡ 2` for all t ≥ 0 and therefore

as − ar ≡ (ar+2` − ar) + (ar+2·2` − ar+2`) + · · ·+ (ar+m·2` − ar+(m−1)2`) ≡ m · 2` 6≡ 0,

implying that ` + 1 ≥ k + 1, i.e. ` ≥ k. Thus s− r ≥ 2k, which is a contradiction.
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